↓ Skip to main content

Genome-wide expression profiling in muscle and subcutaneous fat of lambs in response to the intake of concentrate supplemented with vitamin E

Overview of attention for article published in BMC Genomics, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide expression profiling in muscle and subcutaneous fat of lambs in response to the intake of concentrate supplemented with vitamin E
Published in
BMC Genomics, January 2017
DOI 10.1186/s12864-016-3405-8
Pubmed ID
Authors

Laura González-Calvo, Elda Dervishi, Margalida Joy, Pilar Sarto, Roberto Martin-Hernandez, Magdalena Serrano, Jose M. Ordovás, Jorge H. Calvo

Abstract

The objective of this study was to acquire a broader, more comprehensive picture of the transcriptional changes in the L. Thoracis muscle (LT) and subcutaneous fat (SF) of lambs supplemented with vitamin E. Furthermore, we aimed to identify novel genes involved in the metabolism of vitamin E that might also be involved in meat quality. In the first treatment, seven lambs were fed a basal concentrate from weaning to slaughter (CON). In the second treatment, seven lambs received basal concentrate from weaning to 4.71 ± 2.62 days and thereafter concentrate supplemented with 500 mg dl-α-tocopheryl acetate/kg (VE) during the last 33.28 ± 1.07 days before slaughter. The addition of vitamin E to the diet increased the α-tocopherol muscle content and drastically diminished the lipid oxidation of meat. Gene expression profiles for treatments VE and CON were clearly separated from each other in the LT and SF. Vitamin E supplementation had a dramatic effect on subcutaneous fat gene expression, showing general up-regulation of significant genes, compared to CON treatment. In LT, vitamin E supplementation caused down-regulation of genes related to intracellular signaling cascade. Functional analysis of SF showed that vitamin E supplementation caused up-regulation of the lipid biosynthesis process, cholesterol, and sterol and steroid biosynthesis, and it down-regulated genes related to the stress response. Different gene expression patterns were found between the SF and LT, suggesting tissue specific responses to vitamin E supplementation. Our study enabled us to identify novel genes and metabolic pathways related to vitamin E metabolism that might be implicated in meat quality. Further exploration of these genes and vitamin E could lead to a better understanding of how vitamin E affects the oxidative process that occurs in manufactured meat products.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 23%
Researcher 4 15%
Student > Doctoral Student 3 12%
Student > Postgraduate 2 8%
Student > Bachelor 1 4%
Other 3 12%
Unknown 7 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 23%
Biochemistry, Genetics and Molecular Biology 5 19%
Veterinary Science and Veterinary Medicine 2 8%
Medicine and Dentistry 1 4%
Unknown 12 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2017.
All research outputs
#13,846,227
of 22,953,506 outputs
Outputs from BMC Genomics
#5,313
of 10,686 outputs
Outputs of similar age
#217,357
of 418,252 outputs
Outputs of similar age from BMC Genomics
#112
of 221 outputs
Altmetric has tracked 22,953,506 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 418,252 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 221 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.