↓ Skip to main content

RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome

Overview of attention for article published in BMC Genomics, February 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome
Published in
BMC Genomics, February 2017
DOI 10.1186/s12864-017-3548-2
Pubmed ID
Authors

Chia-Ling Wu, Yoshinori Satomi, Kenneth Walsh

Abstract

Skeletal muscle is a major regulator of systemic metabolism as it serves as the major site for glucose disposal and the main reservoir for amino acids. With aging, cachexia, starvation, and myositis, there is a preferential loss of fast glycolytic muscle fibers. We previously reported a mouse model in which a constitutively-active Akt transgene is induced to express in a subset of muscle groups leading to the hypertrophy of type IIb myofibers with an accompanying increase in strength. This muscle growth protects mice in various cardio-metabolic disease models, but little is known about the underlying cellular and molecular mechanisms by which fast-twitch muscle impacts disease processes and regulates distant tissues. In the present study, poly (A) + tail mRNA-seq and non-targeted metabolomics were performed to characterize the transcriptome and metabolome of the hypertrophic gastrocnemius muscle from Akt1-transgenic mice. Combined metabolomics and transcriptomic analyses revealed that Akt1-induced muscle growth mediated a metabolic shift involving reductions in glycolysis and oxidative phosphorylation, but enhanced pentose phosphate pathway activation and increased branch chain amino acid accumulation. Pathway analysis for the 4,027 differentially expressed genes in muscle identified enriched signaling pathways involving growth, cell cycle regulation, and inflammation. Consistent with a regenerative transcriptional signature, the transgenic muscle tissue was found to be comprised of fibers with centralized nuclei that are positive for embryonic myosin heavy chain. Immunohistochemical analysis also revealed the presence of inflammatory cells associated with the regenerating fibers. Signal peptide prediction analysis revealed 240 differentially expressed in muscle transcripts that potentially encode secreted proteins. A number of these secreted factors have signaling properties that are consistent with the myogenic, metabolic and cardiovascular-protective properties that have previously been associated with type IIb muscle growth. This study provides the first extensive transcriptomic sequencing/metabolomics analysis for a model of fast-twitch myofiber growth. These data reveal that enhanced Akt signaling promotes the activation of pathways that are important for the production of proteins and nucleic acids. Numerous transcripts potentially encoding muscle secreted proteins were identified, indicating the importance of fast-twitch muscle in inter-tissue communication.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 74 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 15%
Student > Bachelor 11 15%
Researcher 10 14%
Student > Ph. D. Student 10 14%
Other 5 7%
Other 10 14%
Unknown 17 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 27%
Agricultural and Biological Sciences 17 23%
Medicine and Dentistry 9 12%
Engineering 3 4%
Sports and Recreations 2 3%
Other 6 8%
Unknown 17 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 December 2017.
All research outputs
#6,469,399
of 22,955,959 outputs
Outputs from BMC Genomics
#2,899
of 10,686 outputs
Outputs of similar age
#104,623
of 307,002 outputs
Outputs of similar age from BMC Genomics
#76
of 236 outputs
Altmetric has tracked 22,955,959 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 307,002 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 236 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.