↓ Skip to main content

NET: a new framework for the vectorization and examination of network data

Overview of attention for article published in Source Code for Biology and Medicine, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NET: a new framework for the vectorization and examination of network data
Published in
Source Code for Biology and Medicine, February 2017
DOI 10.1186/s13029-017-0064-3
Pubmed ID
Authors

Jana Lasser, Eleni Katifori

Abstract

The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like Drosophila tracheoles or leaf venation patterns: the Network Extraction Tool (NET) to extract data and the Graph-edit-GUI (GeGUI) to visualize and modify networks. NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of Drosophila tracheoles. The networks extracted by NET closely approximate the network depicted in the original image. NET is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally GeGUI allows easy handling and visualization of the networks.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 20%
Student > Bachelor 4 16%
Student > Master 4 16%
Researcher 3 12%
Professor > Associate Professor 2 8%
Other 2 8%
Unknown 5 20%
Readers by discipline Count As %
Computer Science 5 20%
Engineering 4 16%
Physics and Astronomy 3 12%
Agricultural and Biological Sciences 2 8%
Earth and Planetary Sciences 2 8%
Other 4 16%
Unknown 5 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 February 2017.
All research outputs
#18,534,624
of 22,955,959 outputs
Outputs from Source Code for Biology and Medicine
#102
of 127 outputs
Outputs of similar age
#310,383
of 420,438 outputs
Outputs of similar age from Source Code for Biology and Medicine
#3
of 3 outputs
Altmetric has tracked 22,955,959 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 127 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,438 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.