↓ Skip to main content

Ex vivo18O-labeling mass spectrometry identifies a peripheral amyloid β clearance pathway

Overview of attention for article published in Molecular Neurodegeneration, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ex vivo18O-labeling mass spectrometry identifies a peripheral amyloid β clearance pathway
Published in
Molecular Neurodegeneration, February 2017
DOI 10.1186/s13024-017-0152-5
Pubmed ID
Authors

Erik Portelius, Niklas Mattsson, Josef Pannee, Henrik Zetterberg, Magnus Gisslén, Hugo Vanderstichele, Eleni Gkanatsiou, Gabriela A. N. Crespi, Michael W. Parker, Luke A. Miles, Johan Gobom, Kaj Blennow

Abstract

Proteolytic degradation of amyloid β (Aβ) peptides has been intensely studied due to the central role of Aβ in Alzheimer's disease (AD) pathogenesis. While several enzymes have been shown to degrade Aβ peptides, the main pathway of Aβ degradation in vivo is unknown. Cerebrospinal fluid (CSF) Aβ42 is reduced in AD, reflecting aggregation and deposition in the brain, but low CSF Aβ42 is, for unknown reasons, also found in some inflammatory brain disorders such as bacterial meningitis. Using (18)O-labeling mass spectrometry and immune-affinity purification, we examined endogenous proteolytic processing of Aβ in human CSF. The Aβ peptide profile was stable in CSF samples from healthy controls but in CSF samples from patients with bacterial meningitis, showing increased leukocyte cell count, (18)O-labeling mass spectrometry identified proteolytic activities degrading Aβ into several short fragments, including abundant Aβ1-19 and 1-20. After antibiotic treatment, no degradation of Aβ was detected. In vitro experiments located the source of the proteolytic activity to blood components, including leukocytes and erythrocytes, with insulin-degrading enzyme as the likely protease. A recombinant version of the mid-domain anti-Aβ antibody solanezumab was found to inhibit insulin-degrading enzyme-mediated Aβ degradation. (18)O labeling-mass spectrometry can be used to detect endogenous proteolytic activity in human CSF. Using this technique, we found an enzymatic activity that was identified as insulin-degrading enzyme that cleaves Aβ in the mid-domain of the peptide, and could be inhibited by a recombinant version of the mid-domain anti-Aβ antibody solanezumab.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 39 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 13%
Other 4 10%
Student > Bachelor 3 8%
Student > Postgraduate 3 8%
Student > Master 3 8%
Other 7 18%
Unknown 15 38%
Readers by discipline Count As %
Medicine and Dentistry 6 15%
Biochemistry, Genetics and Molecular Biology 5 13%
Chemistry 3 8%
Neuroscience 3 8%
Agricultural and Biological Sciences 2 5%
Other 4 10%
Unknown 17 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2017.
All research outputs
#3,108,866
of 22,955,959 outputs
Outputs from Molecular Neurodegeneration
#433
of 852 outputs
Outputs of similar age
#59,111
of 310,289 outputs
Outputs of similar age from Molecular Neurodegeneration
#11
of 25 outputs
Altmetric has tracked 22,955,959 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 852 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,289 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.