↓ Skip to main content

An effective method for the identification and separation of Anopheles minimus, the primary malaria vector in Thailand, and its sister species Anopheles harrisoni, with a comparison of their mating…

Overview of attention for article published in Parasites & Vectors, February 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An effective method for the identification and separation of Anopheles minimus, the primary malaria vector in Thailand, and its sister species Anopheles harrisoni, with a comparison of their mating behaviors
Published in
Parasites & Vectors, February 2017
DOI 10.1186/s13071-017-2035-6
Pubmed ID
Authors

Kritsana Taai, Ralph E. Harbach, Kittipat Aupalee, Wichai Srisuka, Thippawan Yasanga, Yasushi Otsuka, Atiporn Saeung

Abstract

Species of the Anopheles minimus complex are considered to be the primary vectors of malaria in South and Southeast Asia. Two species of the complex, Anopheles minimus and Anopheles harrisoni, occur in Thailand. They are sympatric and difficult to accurately distinguish based on morphological characters. The aim of this study was to investigate the potential of antennal sensory organs to distinguish these two species. Additionally, we investigated their ability to mate in cages of different sizes, as well as the possible mechanism(s) that evokes stenogamous behavior. Large sensilla coeloconica present on the antennae of females of An. minimus and An. harrisoni were counted under a conventional light microscope and various types of antennal sensilla were examined under a scanning electron microscope (SEM). Determinations of mating ability were carried out in 20 and 30 cm(3) cages with a density resting surface (DRS) of 7.2. The insemination rate, frequency of clasper (gonocoxopodite) movement of the male genitalia during induced copulation and duration of mating of the two species were compared. The mean numbers of large sensilla coeloconica on antennal flagellomeres 1-8 and the mean number of large sensilla coeloconica on each flagellum in An. minimus (26.25) and An. harrisoni (31.98) were significantly different. Females of both species bear five types of antennal sensilla: chaetica, trichodea, basiconica, coeloconica and ampullacea. Marked differences in the structure of the large sensilla coeloconica were observed between the two species. Furthermore, only An. minimus could copulate naturally in the small cages. The frequency of clasper movement in the stenogamous An. minimus was significantly higher than in An. harrisoni, but there was no difference in the duration of mating. To our knowledge, this study is the first to examine and discover the usefulness of large sensilla coeloconica on the antennae of females and the frequency of clasper movement in males for distinguishing the sibling species An. minimus and An. harrisoni. The discovery provides an effective and relatively inexpensive method for their identification. Additionally, the greater frequency of clasper movement of An. minimus might influence its ability to mate in small spaces.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 22%
Lecturer 3 17%
Researcher 2 11%
Student > Doctoral Student 1 6%
Unspecified 1 6%
Other 2 11%
Unknown 5 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 17%
Medicine and Dentistry 3 17%
Biochemistry, Genetics and Molecular Biology 2 11%
Social Sciences 2 11%
Immunology and Microbiology 1 6%
Other 2 11%
Unknown 5 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2020.
All research outputs
#12,831,373
of 22,955,959 outputs
Outputs from Parasites & Vectors
#2,099
of 5,483 outputs
Outputs of similar age
#149,005
of 310,778 outputs
Outputs of similar age from Parasites & Vectors
#49
of 157 outputs
Altmetric has tracked 22,955,959 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,483 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,778 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 157 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.