↓ Skip to main content

3D: diversity, dynamics, differential testing – a proposed pipeline for analysis of next-generation sequencing T cell repertoire data

Overview of attention for article published in BMC Bioinformatics, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
3D: diversity, dynamics, differential testing – a proposed pipeline for analysis of next-generation sequencing T cell repertoire data
Published in
BMC Bioinformatics, February 2017
DOI 10.1186/s12859-017-1544-9
Pubmed ID
Authors

Li Zhang, Jason Cham, Alan Paciorek, James Trager, Nadeem Sheikh, Lawrence Fong

Abstract

Cancer immunotherapy has demonstrated significant clinical activity in different cancers. T cells represent a crucial component of the adaptive immune system and are thought to mediate anti-tumoral immunity. Antigen-specific recognition by T cells is via the T cell receptor (TCR) which is unique for each T cell. Next generation sequencing (NGS) of the TCRs can be used as a platform to profile the T cell repertoire. Though there are a number of software tools available for processing repertoire data by mapping antigen receptor segments to sequencing reads and assembling the clonotypes, most of them are not designed to track and examine the dynamic nature of the TCR repertoire across multiple time points or between different biologic compartments (e.g., blood and tissue samples) in a clinical context. We integrated different diversity measures to assess the T cell repertoire diversity and examined the robustness of the diversity indices. Among those tested, Clonality was identified for its robustness as a key metric for study design and the first choice to measure TCR repertoire diversity. To evaluate the dynamic nature of T cell clonotypes across time, we utilized several binary similarity measures (such as Baroni-Urbani and Buser overlap index), relative clonality and Morisita's overlap index, as well as the intraclass correlation coefficient, and performed fold change analysis, which was further extended to investigate the transition of clonotypes among different biological compartments. Furthermore, the application of differential testing enabled the detection of clonotypes which were significantly changed across time. By applying the proposed "3D" analysis pipeline to the real example of prostate cancer subjects who received sipuleucel-T, an FDA-approved immunotherapy, we were able to detect changes in TCR sequence frequency and diversity thus demonstrating that sipuleucel-T treatment affected TCR repertoire in blood and in prostate tissue. We also found that the increase in common TCR sequences between tissue and blood after sipuleucel-T treatment supported the hypothesis that treatment-induced T cell migrated into the prostate tissue. In addition, a second example of prostate cancer subjects treated with Ipilimumab and granulocyte macrophage colony stimulating factor (GM-CSF) was presented in the supplementary documents to further illustrate assessing the treatment-associated change in a clinical context by the proposed workflow. Our paper provides guidance to study the diversity and dynamics of NGS-based TCR repertoire profiling in a clinical context to ensure consistency and reproducibility of post-analysis. This analysis pipeline will provide an initial workflow for TCR sequencing data with serial time points and for comparing T cells in multiple compartments for a clinical study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 86 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 24%
Student > Ph. D. Student 10 12%
Student > Bachelor 9 10%
Student > Master 9 10%
Other 8 9%
Other 13 15%
Unknown 16 19%
Readers by discipline Count As %
Medicine and Dentistry 16 19%
Biochemistry, Genetics and Molecular Biology 15 17%
Agricultural and Biological Sciences 14 16%
Immunology and Microbiology 11 13%
Engineering 4 5%
Other 7 8%
Unknown 19 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2017.
All research outputs
#14,924,861
of 22,957,478 outputs
Outputs from BMC Bioinformatics
#5,065
of 7,307 outputs
Outputs of similar age
#187,893
of 312,054 outputs
Outputs of similar age from BMC Bioinformatics
#82
of 142 outputs
Altmetric has tracked 22,957,478 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,307 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,054 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 142 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.