↓ Skip to main content

Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT)

Overview of attention for article published in Plant Methods, February 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#26 of 1,224)
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

blogs
1 blog
twitter
54 X users
facebook
1 Facebook page

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT)
Published in
Plant Methods, February 2017
DOI 10.1186/s13007-017-0162-x
Pubmed ID
Authors

Saoirse R. Tracy, José Fernández Gómez, Craig J. Sturrock, Zoe A. Wilson, Alison C. Ferguson

Abstract

Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. This study focuses on using X-ray µCT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley (Hordeum vulgare L.) flowers. X-ray µCT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol's iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray µCT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray µCT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. The use of X-ray micro computed tomography (µCT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray µCT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering detailed non-destructive internal 3D phenotypic information. This work represents a novel application of X-ray µCT that could enhance research undertaken in monocot species to enable effective non-destructive staging and developmental analysis for molecular genetic studies and to determine effects of stresses at particular growth stages.

X Demographics

X Demographics

The data shown below were collected from the profiles of 54 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 18%
Researcher 15 17%
Student > Bachelor 12 13%
Student > Master 7 8%
Professor 4 4%
Other 13 14%
Unknown 23 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 41%
Biochemistry, Genetics and Molecular Biology 6 7%
Engineering 5 6%
Chemistry 3 3%
Earth and Planetary Sciences 2 2%
Other 9 10%
Unknown 28 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 43. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 November 2018.
All research outputs
#946,684
of 24,988,543 outputs
Outputs from Plant Methods
#26
of 1,224 outputs
Outputs of similar age
#19,532
of 316,513 outputs
Outputs of similar age from Plant Methods
#1
of 20 outputs
Altmetric has tracked 24,988,543 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,224 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,513 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.