↓ Skip to main content

Selections, frameshift mutations, and copy number variation detected on the surf4.1 gene in the western Kenyan Plasmodium falciparum population

Overview of attention for article published in Malaria Journal, March 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Selections, frameshift mutations, and copy number variation detected on the surf4.1 gene in the western Kenyan Plasmodium falciparum population
Published in
Malaria Journal, March 2017
DOI 10.1186/s12936-017-1743-x
Pubmed ID
Authors

Jesse N. Gitaka, Mika Takeda, Masatsugu Kimura, Zulkarnain Md Idris, Chim W. Chan, James Kongere, Kazuhide Yahata, Francis W. Muregi, Yoshio Ichinose, Akira Kaneko, Osamu Kaneko

Abstract

Plasmodium falciparum SURFIN4.1 is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf 4.1 sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand. Positively significant departures from neutral expectations were detected on the surf 4.1 region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf 4.1 gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36). The authors infer that the high polymorphism of SURFIN4.1 Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1 Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1 on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 24%
Researcher 5 17%
Student > Ph. D. Student 5 17%
Professor > Associate Professor 3 10%
Student > Doctoral Student 2 7%
Other 4 14%
Unknown 3 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 28%
Medicine and Dentistry 6 21%
Agricultural and Biological Sciences 5 17%
Immunology and Microbiology 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 3 10%
Unknown 4 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 March 2017.
All research outputs
#15,448,846
of 22,958,253 outputs
Outputs from Malaria Journal
#4,494
of 5,587 outputs
Outputs of similar age
#197,358
of 310,726 outputs
Outputs of similar age from Malaria Journal
#101
of 118 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,587 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,726 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.