↓ Skip to main content

A hybrid method for the imputation of genomic data in livestock populations

Overview of attention for article published in Genetics Selection Evolution, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A hybrid method for the imputation of genomic data in livestock populations
Published in
Genetics Selection Evolution, March 2017
DOI 10.1186/s12711-017-0300-y
Pubmed ID
Authors

Roberto Antolín, Carl Nettelblad, Gregor Gorjanc, Daniel Money, John M. Hickey

Abstract

This paper describes a combined heuristic and hidden Markov model (HMM) method to accurately impute missing genotypes in livestock datasets. Genomic selection in breeding programs requires high-density genotyping of many individuals, making algorithms that economically generate this information crucial. There are two common classes of imputation methods, heuristic methods and probabilistic methods, the latter being largely based on hidden Markov models. Heuristic methods are robust, but fail to impute markers in regions where the thresholds of heuristic rules are not met, or the pedigree is inconsistent. Hidden Markov models are probabilistic methods which typically do not require specific family structures or pedigree information, making them very flexible, but they are computationally expensive and, in some cases, less accurate. We implemented a new hybrid imputation method that combined heuristic and HMM methods, AlphaImpute and MaCH, and compared the computation time and imputation accuracy of the three methods. AlphaImpute was the fastest, followed by the hybrid method and then the HMM. The computation time of the hybrid method and the HMM increased linearly with the number of iterations used in the hidden Markov model, however, the computation time of the hybrid method increased almost linearly and that of the HMM quadratically with the number of template haplotypes. The hybrid method was the most accurate imputation method for low-density panels when pedigree information was missing, especially if minor allele frequency was also low. The accuracy of the hybrid method and the HMM increased with the number of template haplotypes. The imputation accuracy of all three methods increased with the marker density of the low-density panels. Excluding the pedigree information reduced imputation accuracy for the hybrid method and AlphaImpute. Finally, the imputation accuracy of the three methods decreased with decreasing minor allele frequency. The hybrid heuristic and probabilistic imputation method is able to impute all markers for all individuals in a population, as the HMM. The hybrid method is usually more accurate and never significantly less accurate than a purely heuristic method or a purely probabilistic method and is faster than a standard probabilistic method.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 47 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 27%
Student > Ph. D. Student 9 19%
Student > Master 4 8%
Student > Doctoral Student 3 6%
Student > Bachelor 3 6%
Other 6 13%
Unknown 10 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 52%
Biochemistry, Genetics and Molecular Biology 6 13%
Computer Science 3 6%
Veterinary Science and Veterinary Medicine 1 2%
Psychology 1 2%
Other 2 4%
Unknown 10 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2017.
All research outputs
#4,253,129
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#88
of 821 outputs
Outputs of similar age
#71,156
of 323,707 outputs
Outputs of similar age from Genetics Selection Evolution
#2
of 13 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,707 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.