↓ Skip to main content

The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars

Overview of attention for article published in BMC Plant Biology, February 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars
Published in
BMC Plant Biology, February 2017
DOI 10.1186/s12870-017-1001-y
Pubmed ID
Authors

Reem M. Hussain, Mohammed Ali, Xing Feng, Xia Li

Abstract

The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such notable genes is not the only goal of the study. It managed to put emphasis on the significance of further understanding the potential of soybean GmNAC genes, for the purpose of enhancing tolerance towards abiotic stress in general. This scientific inquiry has also revealed that cultivar genotypes tend to differ in their drought-induced gene expression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 1%
Unknown 71 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 26%
Researcher 11 15%
Student > Master 6 8%
Student > Bachelor 5 7%
Student > Doctoral Student 3 4%
Other 12 17%
Unknown 16 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 44%
Biochemistry, Genetics and Molecular Biology 12 17%
Unspecified 2 3%
Nursing and Health Professions 1 1%
Computer Science 1 1%
Other 3 4%
Unknown 21 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2017.
All research outputs
#12,714,099
of 22,958,253 outputs
Outputs from BMC Plant Biology
#808
of 3,273 outputs
Outputs of similar age
#147,008
of 310,855 outputs
Outputs of similar age from BMC Plant Biology
#8
of 34 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,273 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,855 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.