↓ Skip to main content

Selecting sequence variants to improve genomic predictions for dairy cattle

Overview of attention for article published in Genetics Selection Evolution, March 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
121 Dimensions

Readers on

mendeley
112 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Selecting sequence variants to improve genomic predictions for dairy cattle
Published in
Genetics Selection Evolution, March 2017
DOI 10.1186/s12711-017-0307-4
Pubmed ID
Authors

Paul M. VanRaden, Melvin E. Tooker, Jeffrey R. O’Connell, John B. Cole, Derek M. Bickhart

Abstract

Millions of genetic variants have been identified by population-scale sequencing projects, but subsets of these variants are needed for routine genomic predictions or genotyping arrays. Methods for selecting sequence variants were compared using simulated sequence genotypes and real July 2015 data from the 1000 Bull Genomes Project. Candidate sequence variants for 444 Holstein animals were combined with high-density (HD) imputed genotypes for 26,970 progeny-tested Holstein bulls. Test 1 included single nucleotide polymorphisms (SNPs) for 481,904 candidate sequence variants. Test 2 also included 249,966 insertions-deletions (InDels). After merging sequence variants with 312,614 HD SNPs and editing steps, Tests 1 and 2 included 762,588 and 1,003,453 variants, respectively. Imputation quality from findhap software was assessed with 404 of the sequenced animals in the reference population and 40 randomly chosen animals for validation. Their sequence genotypes were reduced to the subset of genotypes that were in common with HD genotypes and then imputed back to sequence. Predictions were tested for 33 traits using 2015 data of 3983 US validation bulls with daughters that were first phenotyped after August 2011. The average percentage of correctly imputed variants across all chromosomes was 97.2 for Test 1 and 97.0 for Test 2. Total time required to prepare, edit, impute, and estimate the effects of sequence variants for 27,235 bulls was about 1 week using less than 33 threads. Many sequence variants had larger estimated effects than nearby HD SNPs, but prediction reliability improved only by 0.6 percentage points in Test 1 when sequence SNPs were added to HD SNPs and by 0.4 percentage points in Test 2 when sequence SNPs and InDels were included. However, selecting the 16,648 candidate SNPs with the largest estimated effects and adding them to the 60,671 SNPs used in routine evaluations improved reliabilities by 2.7 percentage points. Reliabilities for genomic predictions improved when selected sequence variants were added; gains were similar for simulated and real data for the same population, and larger than previous gains obtained by adding HD SNPs. With many genotyped animals, many data sources, and millions of variants, computing strategies must efficiently balance costs of imputation, selection, and prediction to obtain subsets of markers that provide the highest accuracy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 112 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 <1%
Unknown 111 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 23%
Researcher 21 19%
Student > Master 16 14%
Student > Doctoral Student 8 7%
Student > Postgraduate 6 5%
Other 13 12%
Unknown 22 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 58 52%
Biochemistry, Genetics and Molecular Biology 16 14%
Veterinary Science and Veterinary Medicine 6 5%
Environmental Science 2 2%
Mathematics 1 <1%
Other 2 2%
Unknown 27 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2017.
All research outputs
#7,265,756
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#236
of 821 outputs
Outputs of similar age
#109,872
of 321,098 outputs
Outputs of similar age from Genetics Selection Evolution
#7
of 16 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,098 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.