↓ Skip to main content

Revealing large metagenomic regions through long DNA fragment hybridization capture

Overview of attention for article published in Microbiome, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
13 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Revealing large metagenomic regions through long DNA fragment hybridization capture
Published in
Microbiome, March 2017
DOI 10.1186/s40168-017-0251-0
Pubmed ID
Authors

Cyrielle Gasc, Pierre Peyret

Abstract

High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes from single organisms or metagenomic samples. However, due to the limited capacity of short-read sequence data to assemble complex or low coverage regions, genomes are typically fragmented, leading to draft genomes with numerous underexplored large genomic regions. Revealing these missing sequences is a major goal to resolve concerns in numerous biological studies. To overcome these limitations, we developed an innovative target enrichment method for the reconstruction of large unknown genomic regions. Based on a hybridization capture strategy, this approach enables the enrichment of large genomic regions allowing the reconstruction of tens of kilobase pairs flanking a short, targeted DNA sequence. Applied to a metagenomic soil sample targeting the linA gene, the biomarker of hexachlorocyclohexane (HCH) degradation, our method permitted the enrichment of the gene and its flanking regions leading to the reconstruction of several contigs and complete plasmids exceeding tens of kilobase pairs surrounding linA. Thus, through gene association and genome reconstruction, we identified microbial species involved in HCH degradation which constitute targets to improve biostimulation treatments. This new hybridization capture strategy makes surveying and deconvoluting complex genomic regions possible through large genomic regions enrichment and allows the efficient exploration of metagenomic diversity. Indeed, this approach enables to assign identity and function to microorganisms in natural environments, one of the ultimate goals of microbial ecology.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 3%
United States 1 2%
Unknown 57 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 25%
Student > Ph. D. Student 13 22%
Student > Master 9 15%
Student > Postgraduate 4 7%
Student > Bachelor 3 5%
Other 11 18%
Unknown 5 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 48%
Biochemistry, Genetics and Molecular Biology 12 20%
Environmental Science 3 5%
Immunology and Microbiology 3 5%
Engineering 2 3%
Other 2 3%
Unknown 9 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2017.
All research outputs
#2,535,112
of 25,388,177 outputs
Outputs from Microbiome
#990
of 1,754 outputs
Outputs of similar age
#46,529
of 321,921 outputs
Outputs of similar age from Microbiome
#26
of 37 outputs
Altmetric has tracked 25,388,177 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,754 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.3. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,921 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.