↓ Skip to main content

Ruminant-specific multiple duplication events of PRDM9 before speciation

Overview of attention for article published in BMC Ecology and Evolution, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ruminant-specific multiple duplication events of PRDM9 before speciation
Published in
BMC Ecology and Evolution, March 2017
DOI 10.1186/s12862-017-0892-4
Pubmed ID
Authors

Abinash Padhi, Botong Shen, Jicai Jiang, Yang Zhou, George E. Liu, Li Ma

Abstract

Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known speciation gene, has recently gained attention for its important role in meiotic recombination and hybrid incompatibility. Despite the fact that PRDM9 is a key regulator of recombination and plays a dominant role in hybrid incompatibility, little is known about the underlying genetic and evolutionary mechanisms that generated multiple copies of PRDM9 in many metazoan lineages. The present study reports (1) evidence of ruminant-specific multiple gene duplication events, which likely have had occurred after the ancestral ruminant population diverged from its most recent common ancestor and before the ruminant speciation events, (2) presence of three copies of PRDM9, one copy (lineages I) in chromosome 1 (chr1) and two copies (lineages II & III) in chromosome X (chrX), thus indicating the possibility of ancient inter- and intra-chromosomal unequal crossing over and gene conversion events, (3) while lineages I and II are characterized by the presence of variable tandemly repeated C2H2 zinc finger (ZF) arrays, lineage III lost these arrays, and (4) C2H2 ZFs of lineages I and II, particularly the amino acid residues located at positions -1, 3, and 6 have evolved under strong positive selection. Our results demonstrated two gene duplication events of PRDM9 in ruminants: an inter-chromosomal duplication that occurred between chr1 and chrX, and an intra-chromosomal X-linked duplication, which resulted in two additional copies of PRDM9 in ruminants. The observation of such duplication between chrX and chr1 is rare and may possibly have happened due to unequal crossing-over millions of years ago when sex chromosomes were independently derived from a pair of ancestral autosomes. Two copies (lineages I & II) are characterized by the presence of variable sized tandem-repeated C2H2 ZFs and evolved under strong positive selection and concerted evolution, supporting the notion of well-established Red Queen hypothesis. Collectively, gene duplication, concerted evolution, and positive selection are the likely driving forces for the expansion of ruminant PRDM9 sub-family.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 29%
Student > Ph. D. Student 3 13%
Student > Master 2 8%
Professor 2 8%
Lecturer > Senior Lecturer 1 4%
Other 2 8%
Unknown 7 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 42%
Biochemistry, Genetics and Molecular Biology 6 25%
Computer Science 1 4%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2017.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#2,818
of 3,714 outputs
Outputs of similar age
#196,907
of 322,029 outputs
Outputs of similar age from BMC Ecology and Evolution
#66
of 83 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,029 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.