↓ Skip to main content

Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential

Overview of attention for article published in Stem Cell Research & Therapy, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
5 X users
patent
3 patents

Readers on

mendeley
96 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential
Published in
Stem Cell Research & Therapy, March 2017
DOI 10.1186/s13287-017-0519-0
Pubmed ID
Authors

Yekaterina Galat, Svetlana Dambaeva, Irina Elcheva, Aaruni Khanolkar, Kenneth Beaman, Philip M. Iannaccone, Vasiliy Galat

Abstract

The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research, including mechanistic studies of hematopoiesis, the development of cellular therapies for autoimmune diseases, induced transplant tolerance, anticancer immunotherapies, disease modeling, and drug/toxicity screening. Over the past years, significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal, endothelial, and hematopoietic specification. Thus, it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free, defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. The hemogenic endothelium differentiation was accomplished in an adherent, serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial, myeloid, and lymphoid potential. Monolayer induction based on GSK3 inhibition, described here, yielded a large number of CD31(+)CD34(+) hemogenic endothelium cells. When isolated and propagated in adherent conditions, these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells, these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid, T-lymphoid, and B-lymphoid cells. The results of this study substantiate a method that significantly reduces the complexity of current protocols for hematopoietic induction, offers a defined system to study the factors that affect the early stages of hematopoiesis, and provides a new route of lymphoid and myeloid cell derivation from human pluripotent stem cells, thus enhancing their use in translational medicine.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
United States 1 1%
Unknown 94 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 25 26%
Student > Ph. D. Student 17 18%
Student > Bachelor 11 11%
Other 6 6%
Professor 5 5%
Other 10 10%
Unknown 22 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 24%
Biochemistry, Genetics and Molecular Biology 23 24%
Medicine and Dentistry 7 7%
Immunology and Microbiology 7 7%
Engineering 3 3%
Other 7 7%
Unknown 26 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 February 2024.
All research outputs
#1,835,584
of 25,440,205 outputs
Outputs from Stem Cell Research & Therapy
#99
of 2,760 outputs
Outputs of similar age
#36,271
of 336,879 outputs
Outputs of similar age from Stem Cell Research & Therapy
#2
of 55 outputs
Altmetric has tracked 25,440,205 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,760 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,879 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.