↓ Skip to main content

Cigarette smoke challenges bone marrow mesenchymal stem cell capacities in guinea pig

Overview of attention for article published in Respiratory Research, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cigarette smoke challenges bone marrow mesenchymal stem cell capacities in guinea pig
Published in
Respiratory Research, March 2017
DOI 10.1186/s12931-017-0530-0
Pubmed ID
Authors

Olga Tura-Ceide, Borja Lobo, Tanja Paul, Raquel Puig-Pey, Núria Coll-Bonfill, Jéssica García-Lucio, Valérie Smolders, Isabel Blanco, Joan A. Barberà, Víctor I. Peinado

Abstract

Cigarette smoke (CS) is associated with lower numbers of circulating stem cells and might severely affect their mobilization, trafficking and homing. Our study was designed to demonstrate in an animal model of CS exposure whether CS affects the homing and functional capabilities of bone marrow-derived mesenchymal stem cells (BM-MSCs). Guinea pigs (GP), exposed or sham-exposed to CS, were administered via tracheal instillation or by vascular administration with 2.5 × 10(6) BM-MSCs obtained from CS-exposed or sham-exposed animal donors. Twenty-four hours after cell administration, animals were sacrificed and cells were visualised into lung structures by optical microscopy. BM-MSCs from 8 healthy GP and from 8 GP exposed to CS for 1 month were isolated from the femur, cultured in vitro and assessed for their proliferation, migration, senescence, differentiation potential and chemokine gene expression profile. CS-exposed animals showed greater BM-MSCs lung infiltration than sham-exposed animals regardless of route of administration. The majority of BM-MSCs localized in the alveolar septa. BM-MSCs obtained from CS-exposed animals showed lower ability to engraft and lower proliferation and migration. In vitro, BM-MSCs exposed to CS extract showed a significant reduction of proliferative, cellular differentiation and migratory potential and an increase in cellular senescence in a dose dependent manner. Short-term CS exposure induces BM-MSCs dysfunction. Such dysfunction was observed in vivo, affecting the cell homing and proliferation capabilities of BM-MSCs in lungs exposed to CS and in vitro altering the rate of proliferation, senescence, differentiation and migration capacity. Additionally, CS induced a reduction in CXCL9 gene expression in the BM from CS-exposed animals underpinning a potential mechanistic action of bone marrow dysfunction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 15%
Researcher 4 12%
Student > Postgraduate 4 12%
Student > Bachelor 3 9%
Student > Master 3 9%
Other 5 15%
Unknown 10 29%
Readers by discipline Count As %
Medicine and Dentistry 13 38%
Biochemistry, Genetics and Molecular Biology 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Social Sciences 2 6%
Nursing and Health Professions 1 3%
Other 0 0%
Unknown 13 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 October 2017.
All research outputs
#14,393,794
of 25,382,440 outputs
Outputs from Respiratory Research
#1,347
of 3,062 outputs
Outputs of similar age
#157,177
of 322,668 outputs
Outputs of similar age from Respiratory Research
#24
of 56 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,668 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.