↓ Skip to main content

An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida)

Overview of attention for article published in Frontiers in Zoology, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)

Mentioned by

5 tweeters
1 Facebook page
3 Wikipedia pages


17 Dimensions

Readers on

43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida)
Published in
Frontiers in Zoology, March 2017
DOI 10.1186/s12983-017-0191-3
Pubmed ID

Martin Dohrmann, Christopher Kelley, Michelle Kelly, Andrzej Pisera, John N. A. Hooper, Henry M. Reiswig


Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. Phylogenetic analyses suggest that Aulocalycoida is diphyletic and provide further support for the paraphyly of order Hexactinosida; hence these orders are abolished from the Linnean classification. We further assembled morphological character matrices to integrate so far unsequenced genera into phylogenetic analyses in maximum parsimony (MP), maximum likelihood (ML), Bayesian, and morphology-based binning frameworks. We find that of these four approaches, total-evidence analysis using MP gave the most plausible results concerning congruence with existing phylogenetic and taxonomic hypotheses, whereas the other methods, especially ML and binning, performed more poorly. We use our total-evidence phylogeny of all extant glass sponge genera for ancestral state reconstruction of morphological characters in MP and ML frameworks, gaining new insights into the evolution of major hexactinellid body plans and other characters such as different spicule types. Our study demonstrates how a comprehensive, albeit in some parts provisional, phylogeny of a larger taxon can be achieved with an integrative approach utilizing molecular and morphological data, and how this can be used as a basis for understanding phenotypic evolution. The datasets and associated trees presented here are intended as a resource and starting point for future work on glass sponge evolution.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 26%
Student > Ph. D. Student 6 14%
Student > Bachelor 3 7%
Student > Master 3 7%
Other 2 5%
Other 6 14%
Unknown 12 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 44%
Environmental Science 6 14%
Biochemistry, Genetics and Molecular Biology 2 5%
Psychology 1 2%
Chemistry 1 2%
Other 0 0%
Unknown 14 33%

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2022.
All research outputs
of 21,287,234 outputs
Outputs from Frontiers in Zoology
of 637 outputs
Outputs of similar age
of 283,390 outputs
Outputs of similar age from Frontiers in Zoology
of 4 outputs
Altmetric has tracked 21,287,234 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 637 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.7. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,390 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.