↓ Skip to main content

Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity

Overview of attention for article published in BMC Genomics, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity
Published in
BMC Genomics, March 2017
DOI 10.1186/s12864-017-3633-6
Pubmed ID
Authors

Mahmoud W. Yaish, Himanshu V. Patankar, Dekoum V. M. Assaha, Yun Zheng, Rashid Al-Yahyai, Ramanjulu Sunkar

Abstract

Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 18%
Researcher 12 16%
Student > Master 7 10%
Student > Doctoral Student 6 8%
Professor > Associate Professor 5 7%
Other 11 15%
Unknown 19 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 40%
Biochemistry, Genetics and Molecular Biology 14 19%
Engineering 2 3%
Computer Science 1 1%
Physics and Astronomy 1 1%
Other 3 4%
Unknown 23 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2017.
All research outputs
#20,411,380
of 22,961,203 outputs
Outputs from BMC Genomics
#9,311
of 10,686 outputs
Outputs of similar age
#269,625
of 309,336 outputs
Outputs of similar age from BMC Genomics
#169
of 203 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,336 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 203 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.