↓ Skip to main content

Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract

Overview of attention for article published in BMC Genomics, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract
Published in
BMC Genomics, March 2017
DOI 10.1186/s12864-017-3638-1
Pubmed ID
Authors

Denise K. Gessner, Anne Winkler, Christian Koch, Georg Dusel, Gerhard Liebisch, Robert Ringseis, Klaus Eder

Abstract

It was recently reported that dairy cows fed a polyphenol-rich grape seed and grape marc meal extract (GSGME) during the transition period had an increased milk yield, but the underlying reasons remained unclear. As polyphenols exert a broad spectrum of metabolic effects, we hypothesized that feeding of GSGME influences metabolic pathways in the liver which could account for the positive effects of GSGME in dairy cows. In order to identify these pathways, we performed genome-wide transcript profiling in the liver and lipid profiling in plasma of dairy cows fed GSGME during the transition period at 1 week postpartum. Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts, from which 156 were up- and 51 were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were dealing with cell cycle regulation and the most enriched Kyoto Encyclopedia of Genes and Genomes pathways were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that a great part of these genes are involved in endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and inflammatory processes. Accordingly, protein folding, response to unfolded protein, unfolded protein binding, chemokine activity and heat shock protein binding were identified as one of the most enriched GO biological process and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma concentrations of the acute phase proteins serum amyloid A (SAA) and haptoglobin were reduced in cows fed GSGME compared to control cows. Lipidomic analysis of plasma revealed no differences in the concentrations of individual species of major and minor lipid classes between cows fed GSGME and control cows. Analysis of hepatic transcript profile in cows fed GSGME during the transition period at 1 week postpartum indicates that polyphenol-rich feed components are able to inhibit ER stress-induced UPR and inflammatory processes, both of which are considered to contribute to liver-associated diseases and to impair milk performance in dairy cows, in the liver of dairy cows during early lactation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 5 11%
Student > Ph. D. Student 5 11%
Student > Master 4 9%
Researcher 4 9%
Professor 2 5%
Other 6 14%
Unknown 18 41%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 32%
Veterinary Science and Veterinary Medicine 5 11%
Engineering 2 5%
Medicine and Dentistry 2 5%
Unspecified 1 2%
Other 4 9%
Unknown 16 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2017.
All research outputs
#18,539,663
of 22,961,203 outputs
Outputs from BMC Genomics
#8,217
of 10,686 outputs
Outputs of similar age
#235,374
of 309,217 outputs
Outputs of similar age from BMC Genomics
#150
of 203 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,217 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 203 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.