↓ Skip to main content

TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H2O2

Overview of attention for article published in BMC Biology, March 2017
Altmetric Badge

Mentioned by

twitter
6 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H2O2
Published in
BMC Biology, March 2017
DOI 10.1186/s12915-017-0367-5
Pubmed ID
Authors

Eduardo Pinho Melo, Carlos Lopes, Peter Gollwitzer, Stephan Lortz, Sigurd Lenzen, Ilir Mehmeti, Clemens F. Kaminski, David Ron, Edward Avezov

Abstract

The fate of hydrogen peroxide (H2O2) in the endoplasmic reticulum (ER) has been inferred indirectly from the activity of ER-localized thiol oxidases and peroxiredoxins, in vitro, and the consequences of their genetic manipulation, in vivo. Over the years hints have suggested that glutathione, puzzlingly abundant in the ER lumen, might have a role in reducing the heavy burden of H2O2 produced by the luminal enzymatic machinery for disulfide bond formation. However, limitations in existing organelle-targeted H2O2 probes have rendered them inert in the thiol-oxidizing ER, precluding experimental follow-up of glutathione's role in ER H2O2 metabolism. Here we report on the development of TriPer, a vital optical probe sensitive to changes in the concentration of H2O2 in the thiol-oxidizing environment of the ER. Consistent with the hypothesized contribution of oxidative protein folding to H2O2 production, ER-localized TriPer detected an increase in the luminal H2O2 signal upon induction of pro-insulin (a disulfide-bonded protein of pancreatic β-cells), which was attenuated by the ectopic expression of catalase in the ER lumen. Interfering with glutathione production in the cytosol by buthionine sulfoximine (BSO) or enhancing its localized destruction by expression of the glutathione-degrading enzyme ChaC1 in the lumen of the ER further enhanced the luminal H2O2 signal and eroded β-cell viability. A tri-cysteine system with a single peroxidatic thiol enables H2O2 detection in oxidizing milieux such as that of the ER. Tracking ER H2O2 in live pancreatic β-cells points to a role for glutathione in H2O2 turnover.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 15%
Researcher 9 15%
Student > Ph. D. Student 8 14%
Student > Doctoral Student 5 8%
Student > Bachelor 4 7%
Other 6 10%
Unknown 18 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 25%
Agricultural and Biological Sciences 8 14%
Chemistry 4 7%
Medicine and Dentistry 3 5%
Nursing and Health Professions 2 3%
Other 9 15%
Unknown 18 31%