↓ Skip to main content

Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects

Overview of attention for article published in Genetics Selection Evolution, March 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects
Published in
Genetics Selection Evolution, March 2017
DOI 10.1186/s12711-017-0310-9
Pubmed ID
Authors

Matti Taskinen, Esa A. Mäntysaari, Ismo Strandén

Abstract

Single-step genomic best linear unbiased prediction (BLUP) evaluation combines relationship information from pedigree and genomic marker data. The inclusion of the genomic information into mixed model equations requires the inverse of the combined relationship matrix [Formula: see text], which has a dense matrix block for genotyped animals. To avoid inversion of dense matrices, single-step genomic BLUP can be transformed to single-step single nucleotide polymorphism BLUP (SNP-BLUP) which have observed and imputed marker coefficients. Simple block LDL type decompositions of the single-step relationship matrix [Formula: see text] were derived to obtain different types of linearly equivalent single-step genomic mixed model equations with different sets of reparametrized random effects. For non-genotyped animals, the imputed marker coefficient terms in the single-step SNP-BLUP were calculated on-the-fly during the iterative solution using sparse matrix decompositions without storing the imputed genotypes. Residual polygenic effects were added to genotyped animals and transmitted to non-genotyped animals using relationship coefficients that are similar to imputed genotypes. The relationships were further orthogonalized to improve convergence of iterative methods. All presented single-step SNP-BLUP models can be solved efficiently using iterative methods that rely on iteration on data and sparse matrix approaches. The efficiency, accuracy and iteration convergence of the derived mixed model equations were tested with a small dataset that included 73,579 animals of which 2885 were genotyped with 37,526 SNPs. Inversion of the large and dense genomic relationship matrix was avoided in single-step evaluation by using fully orthogonalized single-step SNP-BLUP formulations. The number of iterations until convergence was smaller in single-step SNP-BLUP formulations than in the original single-step GBLUP when heritability was low, but increased above that of the original single-step when heritability was high.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 24%
Researcher 9 20%
Student > Bachelor 4 9%
Student > Master 4 9%
Other 3 7%
Other 6 13%
Unknown 9 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 57%
Biochemistry, Genetics and Molecular Biology 4 9%
Veterinary Science and Veterinary Medicine 1 2%
Computer Science 1 2%
Sports and Recreations 1 2%
Other 2 4%
Unknown 11 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2017.
All research outputs
#17,289,387
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#549
of 821 outputs
Outputs of similar age
#206,499
of 323,209 outputs
Outputs of similar age from Genetics Selection Evolution
#12
of 16 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,209 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.