↓ Skip to main content

Significance evaluation in factor graphs

Overview of attention for article published in BMC Bioinformatics, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
f1000
1 research highlight platform

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Significance evaluation in factor graphs
Published in
BMC Bioinformatics, March 2017
DOI 10.1186/s12859-017-1614-z
Pubmed ID
Authors

Tobias Madsen, Asger Hobolth, Jens Ledet Jensen, Jakob Skou Pedersen

Abstract

Factor graphs provide a flexible and general framework for specifying probability distributions. They can capture a range of popular and recent models for analysis of both genomics data as well as data from other scientific fields. Owing to the ever larger data sets encountered in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Two novel numerical approximations for evaluation of statistical significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from a theoretical viewpoint and with simulations. A guideline for choosing between the normal approximation, saddle-point approximation and importance sampling is also provided. Finally, the applicability of the methods is demonstrated with examples from cancer genomics, motif-analysis and phylogenetics. The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets in the general factor graph framework.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Professor 2 17%
Researcher 2 17%
Student > Master 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 3 25%
Readers by discipline Count As %
Computer Science 4 33%
Medicine and Dentistry 2 17%
Agricultural and Biological Sciences 1 8%
Nursing and Health Professions 1 8%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 January 2018.
All research outputs
#14,929,039
of 22,962,258 outputs
Outputs from BMC Bioinformatics
#5,063
of 7,306 outputs
Outputs of similar age
#184,539
of 309,402 outputs
Outputs of similar age from BMC Bioinformatics
#74
of 122 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,306 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,402 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.