↓ Skip to main content

Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: application to Mycobacterium tuberculosis

Overview of attention for article published in BMC Bioinformatics, April 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
24 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: application to Mycobacterium tuberculosis
Published in
BMC Bioinformatics, April 2017
DOI 10.1186/s12859-017-1550-y
Pubmed ID
Authors

Gaurang Mahajan, Shekhar C. Mande

Abstract

A comprehensive map of the human-M. tuberculosis (MTB) protein interactome would help fill the gaps in our understanding of the disease, and computational prediction can aid and complement experimental studies towards this end. Several sequence-based in silico approaches tap the existing data on experimentally validated protein-protein interactions (PPIs); these PPIs serve as templates from which novel interactions between pathogen and host are inferred. Such comparative approaches typically make use of local sequence alignment, which, in the absence of structural details about the interfaces mediating the template interactions, could lead to incorrect inferences, particularly when multi-domain proteins are involved. We propose leveraging the domain-domain interaction (DDI) information in PDB complexes to score and prioritize candidate PPIs between host and pathogen proteomes based on targeted sequence-level comparisons. Our method picks out a small set of human-MTB protein pairs as candidates for physical interactions, and the use of functional meta-data suggests that some of them could contribute to the in vivo molecular cross-talk between pathogen and host that regulates the course of the infection. Further, we present numerical data for Pfam domain families that highlights interaction specificity on the domain level. Not every instance of a pair of domains, for which interaction evidence has been found in a few instances (i.e. structures), is likely to functionally interact. Our sorting approach scores candidates according to how "distant" they are in sequence space from known examples of DDIs (templates). Thus, it provides a natural way to deal with the heterogeneity in domain-level interactions. Our method represents a more informed application of local alignment to the sequence-based search for potential human-microbial interactions that uses available PPI data as a prior. Our approach is somewhat limited in its sensitivity by the restricted size and diversity of the template dataset, but, given the rapid accumulation of solved protein complex structures, its scope and utility are expected to keep steadily improving.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 4%
Unknown 23 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 29%
Other 4 17%
Student > Ph. D. Student 4 17%
Student > Bachelor 3 13%
Unspecified 1 4%
Other 3 13%
Unknown 2 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 38%
Agricultural and Biological Sciences 3 13%
Computer Science 2 8%
Unspecified 1 4%
Nursing and Health Professions 1 4%
Other 3 13%
Unknown 5 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2017.
All research outputs
#17,885,520
of 22,962,258 outputs
Outputs from BMC Bioinformatics
#5,958
of 7,306 outputs
Outputs of similar age
#220,554
of 308,981 outputs
Outputs of similar age from BMC Bioinformatics
#85
of 116 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,306 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,981 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.