↓ Skip to main content

Genome-wide analysis of microRNA targeting impacted by SNPs in cucumber genome

Overview of attention for article published in BMC Genomics, April 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide analysis of microRNA targeting impacted by SNPs in cucumber genome
Published in
BMC Genomics, April 2017
DOI 10.1186/s12864-017-3665-y
Pubmed ID
Authors

Jian Ling, Zhongqin Luo, Feng Liu, Zhenchuan Mao, Yuhong Yang, Bingyan Xie

Abstract

microRNAs (miRNAs) are endogenous small RNAs that play important regulatory functions in plant development. Genetic variations in miRNAs sequences or their target-binding sites (microRNA-target interaction sites) can alter miRNA targets in animal and human. Whether these single nucleotide polymorphisms (SNPs) in plant are functional have not yet been determined. In this study, we constructed leaf, root, and stem-derived small libraries of cucumber (Cucumis sativus) line 9930 (cultivated China-group cucumber) and C. sativus var. hardwickii (wild India group cucumber). A total of 22 conserved miRNA families, nine less-conserved miRNA families, and 49 cucumber-specific miRNAs were identified in both line 9930 and hardwickii. We employed cucumber resequencing data to perform a genome-wide scan for SNPs in cucumber miRNA-target interaction sites, including miRNA mature sequences and miRNA-target binding sites. As a result, we identified a total of 19 SNPs in mature miRNA sequences and 113 SNPs in miRNA-target binding sites with the potential to affect miRNA-target interactions. Furthermore, we experimentally confirmed that these SNPs produced 14 9930-unique targets mRNAs and 15 hardwickii-unique targets mRNA for cucumber miRNAs. This is the first experimental validation of SNPs in miRNA-target interaction sites affecting miRNA-target binding in plants. Our results indicate that SNPs can alter miRNA function and produce unique miRNA targets in cultivated and wild cucumbers. Therefore, miRNA-related SNPs may have played important in events that led to the agronomic differences between domestic and wild cucumber.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 25%
Student > Ph. D. Student 5 25%
Researcher 4 20%
Student > Bachelor 2 10%
Lecturer 1 5%
Other 1 5%
Unknown 2 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 45%
Agricultural and Biological Sciences 7 35%
Computer Science 1 5%
Unknown 3 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2017.
All research outputs
#18,540,642
of 22,962,258 outputs
Outputs from BMC Genomics
#8,217
of 10,686 outputs
Outputs of similar age
#235,044
of 308,980 outputs
Outputs of similar age from BMC Genomics
#148
of 187 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,980 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 187 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.