↓ Skip to main content

Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development

Overview of attention for article published in BMC Plant Biology, April 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development
Published in
BMC Plant Biology, April 2017
DOI 10.1186/s12870-017-1022-6
Pubmed ID
Authors

Mohammad H. Dezfulian, Curtis Foreman, Espanta Jalili, Mrinal Pal, Rajdeep K. Dhaliwal, Don Karl A. Roberto, Kathleen M. Imre, Susanne E. Kohalmi, William L. Crosby

Abstract

Branched-chain amino acids (BCAAs) are synthesized by plants, fungi, bacteria, and archaea with plants being the major source of these amino acids in animal diets. Acetolactate synthase (ALS) is the first enzyme in the BCAA synthesis pathway. Although the functional contribution of ALS to BCAA biosynthesis has been extensively characterized, a comprehensive understanding of the regulation of this pathway at the molecular level is still lacking. To characterize the regulatory processes governing ALS activity we utilized several complementary approaches. Using the ALS catalytic protein subunit as bait we performed a yeast two-hybrid (Y2H) screen which resulted in the identification of a set of interacting proteins, two of which (denoted as ALS-INTERACTING PROTEIN1 and 3 [AIP1 and AIP3, respectively]) were found to be evolutionarily conserved orthologues of bacterial feedback-regulatory proteins and therefore implicated in the regulation of ALS activity. To investigate the molecular role AIPs might play in BCAA synthesis in Arabidopsis thaliana, we examined the functional contribution of aip1 and aip3 knockout alleles to plant patterning and development and BCAA synthesis under various growth conditions. Loss-of-function genetic backgrounds involving these two genes exhibited differential aberrant growth responses in valine-, isoleucine-, and sodium chloride-supplemented media. While BCAA synthesis is believed to be localized to the chloroplast, both AIP1 and AIP3 were found to localize to the peroxisome in addition to the chloroplast. Analysis of free amino acid pools in the mutant backgrounds revealed that they differ in the absolute amount of individual BCAAs accumulated and exhibit elevated levels of BCAAs in leaf tissues. Despite the phenotypic differences observed in aip1 and aip3 backgrounds, functional redundancy between these loci was suggested by the finding that aip1/aip3 double knockout mutants are severely developmentally compromised. Taken together the data suggests that the two regulatory proteins, in conjunction with ALS, have overlapping but distinct functions in BCAA synthesis, and also play a role in pathways unrelated to BCAA synthesis such as sodium-ion homeostasis, extending to broader aspects of patterning and development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 24%
Researcher 6 14%
Student > Bachelor 3 7%
Student > Doctoral Student 2 5%
Other 2 5%
Other 6 14%
Unknown 13 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 45%
Biochemistry, Genetics and Molecular Biology 4 10%
Nursing and Health Professions 2 5%
Social Sciences 1 2%
Medicine and Dentistry 1 2%
Other 0 0%
Unknown 15 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2017.
All research outputs
#15,867,545
of 23,577,761 outputs
Outputs from BMC Plant Biology
#1,503
of 3,318 outputs
Outputs of similar age
#195,998
of 311,109 outputs
Outputs of similar age from BMC Plant Biology
#13
of 29 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,318 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,109 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.