↓ Skip to main content

Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma

Overview of attention for article published in BMC Neurology, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma
Published in
BMC Neurology, April 2017
DOI 10.1186/s12883-017-0843-0
Pubmed ID
Authors

Jinfeng Wu, Haibo Zhang, Yang Xu, Jingwen Zhang, Wei Zhu, Yi Zhang, Liang Chen, Wei Hua, Ying Mao

Abstract

Juglone is a natural pigment, which has cytotoxic effect against various human tumor cells. However, its cytotoxicity to glioma cells, especially to tumor stem-like cells (TSCs) has not been demonstrated. TSCs of glioma were enriched from U87 and two primary cells (SHG62, and SHG66) using serum-free medium supplemented with growth factors, including bFGF, EGF and B27. After treatment of juglone with gradient concentrations (0, 10, 20, and 40 μM), the viability and apoptosis of TSCs were evaluated by WST-8 assay and flow cytometry. Reactive oxygen species (ROS) was labeled by the cell-permeable fluorescent probe and detected with flow cytometry. ROS scavenger (NAC) and p38-MAPK inhibitor (SB203580) were applied to resist the cytotoxic effect. Caspase 9 cleavage and p38 phosphorylation (P-p38) were quantified by western blot. Juglone as well as temozolomide (TMZ) were administrated in intracranial xenografts and MR scan was performed every week to evaluate the anti-tumor effect in vivo. Juglone could obviously inhibit the proliferation of TSCs in glioma by decreasing cell viability (P < 0.01) and inducing apoptosis (P < 0.01), which was accompanied by increased caspase 9 cleavage in a dose-dependent manner (P < 0.01). In the meantime, juglone could generate ROS significantly and increase p38 phosphorylation (P < 0.01). In addition, pretreatment with ROS scavenger or p38-MAPK inhibitor could reverse juglone-induced cytotoxicity (P < 0.01). More importantly, juglone could also suppress tumor growth in vivo and improve the survival of U87-bearing mice compared with control (P < 0.05), although TMZ seemed to have better effect. Juglone could inhibit the growth of TSCs in gliomas through the activation of ROS-p38-MAPK pathway in vitro, and the anti-glioma effect was validated in vivo, which offers a potential therapeutic agent to gliomas.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Student > Master 6 19%
Student > Doctoral Student 5 16%
Student > Bachelor 4 13%
Other 2 6%
Other 4 13%
Unknown 4 13%
Readers by discipline Count As %
Medicine and Dentistry 10 31%
Biochemistry, Genetics and Molecular Biology 8 25%
Neuroscience 4 13%
Agricultural and Biological Sciences 2 6%
Veterinary Science and Veterinary Medicine 1 3%
Other 1 3%
Unknown 6 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 May 2017.
All research outputs
#13,854,210
of 22,963,381 outputs
Outputs from BMC Neurology
#1,166
of 2,454 outputs
Outputs of similar age
#164,618
of 309,929 outputs
Outputs of similar age from BMC Neurology
#29
of 51 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,454 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,929 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.