↓ Skip to main content

Ex vitro hairy root induction in detached peanut leaves for plant–nematode interaction studies

Overview of attention for article published in Plant Methods, April 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ex vitro hairy root induction in detached peanut leaves for plant–nematode interaction studies
Published in
Plant Methods, April 2017
DOI 10.1186/s13007-017-0176-4
Pubmed ID
Authors

Larissa Arrais Guimaraes, Bruna Medeiros Pereira, Ana Claudia Guerra Araujo, Patricia Messenberg Guimaraes, Ana Cristina Miranda Brasileiro

Abstract

Peanut (Arachis hypogaea) production is largely affected by a variety of abiotic and biotic stresses, including the root-knot nematode (RKN) Meloidogyne arenaria that causes yield losses worldwide. Transcriptome studies of wild Arachis species, which harbor resistance to a number of pests and diseases, disclosed several candidate genes for M. arenaria resistance. Peanut is recalcitrant to genetic transformation, so the use of Agrobacterium rhizogenes-derived hairy roots emerged as an alternative for in-root functional characterization of these candidate genes. The present report describes an ex vitro methodology for hairy root induction in detached leaves based on the well-known ability of peanut to produce roots spontaneously from its petiole, which can be maintained for extended periods under high-humidity conditions. Thirty days after infection with the A. rhizogenes 'K599' strain, 90% of the detached leaves developed transgenic hairy roots with 5 cm of length in average, which were then inoculated with M. arenaria. For improved results, plant transformation, and nematode inoculation parameters were adjusted, such as bacterial cell density and growth stage; moist chamber conditions and nematode inoculum concentration. Using this methodology, a candidate gene for nematode resistance, AdEXLB8, was successfully overexpressed in hairy roots of the nematode-susceptible peanut cultivar 'Runner', resulting in 98% reduction in the number of galls and egg masses compared to the control, 60 days after M. arenaria infection. This methodology proved to be more practical and cost-effective for functional validation of peanut candidate genes than in vitro and composite plant approaches, as it requires less space, reduces analysis costs and displays high transformation efficiency. The reduction in the number of RKN galls and egg masses in peanut hairy roots overexpressing AdEXLB8 corroborated the use of this strategy for functional characterization of root expressing candidate genes. This approach could be applicable not only for peanut-nematode interaction studies but also to other peanut root diseases, such as those caused by fungi and bacteria, being also potentially extended to other crop species displaying similar petiole-rooting competence.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Italy 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 39%
Student > Master 4 9%
Student > Ph. D. Student 4 9%
Student > Bachelor 3 7%
Student > Doctoral Student 1 2%
Other 3 7%
Unknown 13 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 50%
Biochemistry, Genetics and Molecular Biology 4 9%
Business, Management and Accounting 1 2%
Veterinary Science and Veterinary Medicine 1 2%
Social Sciences 1 2%
Other 1 2%
Unknown 15 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2017.
All research outputs
#7,524,541
of 22,963,381 outputs
Outputs from Plant Methods
#506
of 1,086 outputs
Outputs of similar age
#120,834
of 310,118 outputs
Outputs of similar age from Plant Methods
#17
of 34 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,086 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,118 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.