↓ Skip to main content

Glucose-regulated protein 78 demonstrates antiviral effects but is more suitable for hepatocellular carcinoma prevention in hepatitis B

Overview of attention for article published in Virology Journal, April 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Glucose-regulated protein 78 demonstrates antiviral effects but is more suitable for hepatocellular carcinoma prevention in hepatitis B
Published in
Virology Journal, April 2017
DOI 10.1186/s12985-017-0747-z
Pubmed ID
Authors

Nai Q. Zheng, Zi H. Zheng, Hai X. Xu, Ming X. Huang, Xiao M. Peng

Abstract

Hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma in Asia and Africa. Existing antivirals cannot cure HBV or eliminate risk of hepatocellular carcinoma. Glucose-regulated protein 78 (GRP78) can inhibit HBV replication, but promote virion secretion and hepatocellular cancer cell invasion. For these reasons, the overall effect of GRP78 on HBV production and whether to utilize the HBV replication-inhibitory effect of GRP78 up-regulation or the hepatocellular cancer cell invasion-inhibitory effect of its down-regulation were further investigated in order to improve the efficacy of current antiviral therapy. GRP78 regulations in HepG2.2.15 cells were conducted by transfections of expressing vector and small interfering RNA, respectively. The changes in HBV replication, hepatitis B e antigen (HBeAg) synthesis and hepatoma cell motility were monitored. GRP78 overall decreased HBV production due to its HBV replication-inhibitory effect time-dependently overwhelming virion secretion-promoting effect in HepG2.2.15 cells. Unlike the parental cells (HepG2), HepG2.2.15 cells demonstrated decreased expressions of the major genes in the interferon-β1-dependent pathway. Moreover, the expressions of these genes were not affected by GRP78 regulations. However, GRP78 was found to inhibit HBeAg secretion and to increase the retro-transportation of capsid assembly-interfering HBeAg precursor from the endoplasmic reticulum into the cytosol where new viral nucleocapsids formed. Furthermore, GRP78 overexpression promoted wound healing process (the motility) of HepG2.2.15 cells. In contrast, GRP78 knockdown enhanced HBV replication and HBeAg secretion, but they were abolished by entecavir and furin inhibitor, respectively. GRP78 mainly demonstrates anti-HBV effects, reducing HBV production and HBeAg secretion. With due regard to the hepatocellular cancer invasion risk of the overexpression and the rectifiability of the unpleasant effects of the knockdown, GRP78 down-regulation may be more suitable to serve as an additive strategy to cover the hepatocellular cancer prevention shortage of current antiviral therapy in the future.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 21%
Researcher 2 14%
Other 2 14%
Student > Master 2 14%
Unspecified 1 7%
Other 1 7%
Unknown 3 21%
Readers by discipline Count As %
Medicine and Dentistry 4 29%
Agricultural and Biological Sciences 2 14%
Nursing and Health Professions 2 14%
Unspecified 1 7%
Computer Science 1 7%
Other 1 7%
Unknown 3 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2018.
All research outputs
#18,541,268
of 22,963,381 outputs
Outputs from Virology Journal
#2,450
of 3,057 outputs
Outputs of similar age
#235,821
of 310,038 outputs
Outputs of similar age from Virology Journal
#35
of 49 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,057 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,038 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.