↓ Skip to main content

Long non-coding RNA NKILA inhibits migration and invasion of non-small cell lung cancer via NF-κB/Snail pathway

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
111 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Long non-coding RNA NKILA inhibits migration and invasion of non-small cell lung cancer via NF-κB/Snail pathway
Published in
Journal of Experimental & Clinical Cancer Research, April 2017
DOI 10.1186/s13046-017-0518-0
Pubmed ID
Authors

Zhiliang Lu, Yuan Li, Jingnan Wang, Yun Che, Shouguo Sun, Jianbing Huang, Zhaoli Chen, Jie He

Abstract

Numerous studies have shown that long non-coding RNAs (lncRNAs) play key roles during multiple cancer processes, such as cell proliferation, apoptosis, migration and invasion. The previous studies found that NKILA interacted with and suppressed the nuclear translocation of NF-KappaB, which influenced metastasis and prognosis in breast cancer. However the clinical significance and biological role of NKILA in non-small cell lung cancer (NSCLC) remains unknown. We examined expression levels of NKILA in 106 pairs of NSCLC tissues and cell lines. The expression level of NKILA after TGF-β1 stimulation also was examined by qRT-PCR and validated by Chromatin immunoprecipitation (ChIP). Gain-of-function and loss-of-function assays were performed to examine the effect of NKILA on proliferation, migration and invasion of NSCLC cells. RNA immunoprecipitation (RIP), western blot and rescue experiments were carried out to reveal the interrelation between NKILA, NF-κB and EMT signal pathway. The expression of NKILA was down-regulated in NSCLC cancer tissues compared with matched adjacent noncancerous tissues, and lower NKILA expression in tumor tissues were significantly correlated with lymph node metastasis and advanced TNM stage. We found that the expression of NKILA was mainly regulated by classical TGF-β signal pathway in NSCLC cells rather than NF-κB pathway reported in breast cancer. Gain and loss of function assays found that NKILA inhibited migration, invasion and viability of NSCLC cells. Mechanistic study showed that NKILA attenuated Snail expression via inhibiting the phosphorylation of IκBα and NF-κB activation, subsequently suppressed the expression of markers of epithelial-mesenchymal transition process. The present study found that the expression of NKILA was downregulated in tumor tissues of NSCLC, which improved the metastasis of NSCLC patients. In vitro studies further clarified that the expression of NKILA was regulated through classical TGF-β signal pathway, which subsequently inhibited migration and invasion of NSCLC cells through interfering NF-κB/Snail signal pathway in NSCLC cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 21%
Researcher 3 9%
Student > Postgraduate 3 9%
Professor > Associate Professor 2 6%
Student > Master 2 6%
Other 7 21%
Unknown 10 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 29%
Agricultural and Biological Sciences 5 15%
Medicine and Dentistry 4 12%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Unspecified 1 3%
Other 2 6%
Unknown 11 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2017.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#1,462
of 2,380 outputs
Outputs of similar age
#234,100
of 323,974 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#12
of 23 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,380 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,974 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.