↓ Skip to main content

Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, April 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii
Published in
Biotechnology for Biofuels and Bioproducts, April 2017
DOI 10.1186/s13068-017-0779-z
Pubmed ID
Authors

Chaogang Wang, Xi Chen, Hui Li, Jiangxin Wang, Zhangli Hu

Abstract

Nutrient limitation, such as nitrogen depletion, is the most widely used method for improving microalgae fatty acid production; however, these harsh conditions also inhibit algal growth significantly and even kill cells at all. To avoid these problems, we used artificial microRNA (amiRNA) technology as a useful tool to manipulate metabolic pathways to increase fatty acid contents effectively in the green microalga Chlamydomonas reinhardtii. We down-regulated the expression of phosphoenolpyruvate carboxylase (PEPC), which catalyzes the formation of oxaloacetate from phosphoenolpyruvate and regulates carbon flux. amiRNAs against two CrPEPC genes were designed and transformed into Chlamydomonas cells and amiRNAs were induced by heat shock treatment. The transcription levels of amiRNAs increased 16-28 times, resulting in the remarkable decreases of the expression of CrPEPCs. In the end, inhibiting the expression of the CrPEPC genes dramatically increased the total fatty acid content in the transgenic algae by 28.7-48.6%, which mostly increased the content of C16-C22 fatty acids. Furthermore, the highest content was that of C18:3n3 with an average increase of 35.75%, while C20-C22 fatty acid content significantly increased by 85-160%. Overall our results suggest that heat shock treatment induced the expression of amiRNAs, which can effectively down-regulate the expression of CrPEPCs in C. reinhardtii, resulting in an increase of fatty acid synthesis with the most significant increase occurring for C16 to C22 fatty acids.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 22%
Student > Master 10 15%
Researcher 9 14%
Student > Bachelor 9 14%
Professor 3 5%
Other 6 9%
Unknown 14 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 29%
Agricultural and Biological Sciences 18 28%
Energy 2 3%
Immunology and Microbiology 2 3%
Environmental Science 1 2%
Other 4 6%
Unknown 19 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1,416
of 1,578 outputs
Outputs of similar age
#284,489
of 324,612 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#56
of 59 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,612 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.