↓ Skip to main content

A topology-based method to mitigate the dosimetric uncertainty caused by the positional variation of the boost volume in breast conservative radiotherapy

Overview of attention for article published in Radiation Oncology, March 2017
Altmetric Badge

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A topology-based method to mitigate the dosimetric uncertainty caused by the positional variation of the boost volume in breast conservative radiotherapy
Published in
Radiation Oncology, March 2017
DOI 10.1186/s13014-017-0801-4
Pubmed ID
Authors

Peng-Yi Lee, Chih-Yuan Lin, Shang-Wen Chen, Chun-Ru Chien, Chun-Nan Chu, Hsiu-Ting Hsu, Ji-An Liang, Ying-Jun Lin, An-Cheng Shiau

Abstract

To improve local control rate in patients with breast cancer receiving adjuvant radiotherapy after breast conservative surgery, additional boost dose to the tumor bed could be delivered simultaneously via the simultaneous integrated boost (SIB) modulated technique. However, the position of tumor bed kept changing during the treatment course as the treatment position was aligned to bony anatomy. This study aimed to analyze the positional uncertainties between bony anatomy and tumor bed, and a topology-based approach was derived to stratify patients with high variation in tumor bed localization. Sixty patients with early-stage breast cancer or ductal carcinoma in situ were enrolled. All received adjuvant whole breast radiotherapy with or without local boost via SIB technique. The delineation of tumor bed was defined by incorporating the anatomy of seroma, adjacent surgical clips, and any architectural distortion on computed tomography simulation. A total of 1740 on-board images were retrospectively analyzed. Positional uncertainty of tumor bed was assessed by four components: namely systematic error (SE), and random error (RE), through anterior-posterior (AP), cranial-caudal (CC), left-right (LR) directions and couch rotation (CR). Age, tumor location, and body-mass factors including volume of breast, volume of tumor bed, breast thickness, and body mass index (BMI) were analyzed for their predictive role. The appropriate margin to accommodate the positional uncertainty of the boost volume was assessed, and the new plans with this margin for the tumor bed was designed as the high risk planning target volume (PTV-H) were created retrospectively to evaluate the impact on organs at risk. In univariate analysis, a larger breast thickness, larger breast volume, higher BMI, and different tumor locations correlated with a greater positional uncertainty of tumor bed. However, BMI was the only factor associated with displacements of surgical clips in the multivariate analysis and patients with higher BMI were stratified as high variation group. When image guidance was aligned to bony structures, the SE and RE of clip displacement were consistently larger in the high variation group. The corresponding PTV-H margins for the high- and low-variation groups were 7, 10, 10 mm and 4, 9, 6 mm in AP, CC, LR directions, respectively. The heart dose between the two plans was not significantly different, whereas the dosimetric parameters for the ipsilateral lung were generally higher in the new plans. In patients with breast cancer receiving adjuvant radiotherapy, a higher BMI is associated with a greater positional uncertainty of the boost tumor volume. More generous margin should be considered and it can be safely applied through proper design of beam arrangement with advanced treatment techniques.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 25%
Student > Bachelor 6 21%
Researcher 3 11%
Student > Ph. D. Student 3 11%
Student > Doctoral Student 1 4%
Other 2 7%
Unknown 6 21%
Readers by discipline Count As %
Medicine and Dentistry 8 29%
Nursing and Health Professions 5 18%
Psychology 3 11%
Computer Science 1 4%
Sports and Recreations 1 4%
Other 3 11%
Unknown 7 25%