↓ Skip to main content

Multi-scale mathematical modelling of tumour growth and microenvironments in anti-angiogenic therapy

Overview of attention for article published in BioMedical Engineering OnLine, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multi-scale mathematical modelling of tumour growth and microenvironments in anti-angiogenic therapy
Published in
BioMedical Engineering OnLine, December 2016
DOI 10.1186/s12938-016-0275-x
Pubmed ID
Authors

Yan Cai, Jie Zhang, Zhiyong Li

Abstract

Angiogenesis, a process of generation of new blood vessels from the pre-existing vasculature, has been demonstrated to be a basic prerequisite for sustainable growth and proliferation of tumour. Anti-angiogenic treatments show normalization of tumour vasculature and microenvironment at least transiently in both preclinical and clinical settings. In this study, we proposed a multi-scale mathematical model to simulate the dynamic changes of tumour microvasculature and microenvironment in response to anti-angiogenic drug endostatin (ES). We incorporated tumour growth, angiogenesis and vessel remodelling at tissue level, by coupling tumour cell phenotypes and endothelial cell behaviour in response to local chemical and haemodynamical microenvironment. Computational simulation results showed the tumour morphology and growth curves in general tumour progression and following different anti-angiogenic drug strategies. Furthermore, different anti-angiogenic drug strategies were designed to test the influence of ES on tumour growth and morphology. The largest reduction of tumour size was found when ES is injected at simulation time 100, which was concomitant with the emergence of angiogenesis phase. The proposed model not only can predict detailed information of chemicals distribution and vessel remodelling, but also has the potential to specific anti-angiogenic drugs by modifying certain functional modules.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Student > Bachelor 3 20%
Unspecified 1 7%
Student > Doctoral Student 1 7%
Researcher 1 7%
Other 1 7%
Unknown 4 27%
Readers by discipline Count As %
Engineering 3 20%
Biochemistry, Genetics and Molecular Biology 2 13%
Unspecified 1 7%
Environmental Science 1 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Other 2 13%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2019.
All research outputs
#15,457,417
of 22,968,808 outputs
Outputs from BioMedical Engineering OnLine
#424
of 824 outputs
Outputs of similar age
#257,270
of 421,665 outputs
Outputs of similar age from BioMedical Engineering OnLine
#6
of 18 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 824 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,665 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.