↓ Skip to main content

A chronology of ratios between black smoke and PM10 and PM2.5 in the context of comparison of air pollution epidemiology concentration-response functions

Overview of attention for article published in Environmental Health, May 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A chronology of ratios between black smoke and PM10 and PM2.5 in the context of comparison of air pollution epidemiology concentration-response functions
Published in
Environmental Health, May 2017
DOI 10.1186/s12940-017-0252-2
Pubmed ID
Authors

Mathew R. Heal, Iain J. Beverland

Abstract

For many air pollution epidemiological studies in Europe, 'black smoke' (BS) was the only measurement available to quantify ambient particulate matter (PM), particularly for exposures prior to the mid-1990s when quantification via the PM10 and/or PM2.5 metrics was introduced. The aim of this work was to review historic BS and PM measurements to allow comparison of health concentration-response functions (CRF) derived using BS as the measure of exposure with CRFs derived using PM10 or PM2.5. The literature was searched for quantitative information on measured ratios of BS:PM10, BS:PM2.5, and chemical composition of PM; with specific focus on the United Kingdom (UK) between 1970 and the early 2000s when BS measurements were discontinued. The average BS:PM10 ratio in urban background air was just below unity at the start of the 1970s, decreased rapidly to ≈ 0.7 in the mid-1970s and to ≈ 0.5 at the end of the 1970s, with continued smaller declines in the 1980s, and was within the range 0.2-0.4 by the end of the 1990s. The limited data for the BS:PM2.5 ratio suggest it equalled or exceeded unity at the start of the 1970s, declined to ≈ 0.7 by the end of the 1970s, with slower decline thereafter to a range 0.4-0.65 by the end of the 1990s. For an epidemiological study that presents a CRF BS value, the corresponding CRF PM10 value can be estimated as R BS:PM10 × CRF BS where R BS:PM10 is the BS:PM10 concentration ratio, if the toxicity of PM10 is assumed due only to the component quantified by a BS measurement. In the general case of some (but unknown) contribution of toxicity from non-BS components of PM10 then CRF PM10 > R BS:PM10 × CRF BS, with CRF PM10 exceeding CRFBS if the toxicity of the other components in PM10 is greater than the toxicity of the component to which the BS metric is sensitive. Similar analyses were applied to relationships between CRF PM2.5 and CRF BS. Application of this analysis to example published CRF BS values for short and long-term health effects of PM suggest health effects from other components in the PM mixture in addition to the fine black particles characterised by BS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 25%
Student > Ph. D. Student 7 19%
Student > Master 2 6%
Student > Doctoral Student 2 6%
Lecturer > Senior Lecturer 1 3%
Other 2 6%
Unknown 13 36%
Readers by discipline Count As %
Environmental Science 8 22%
Nursing and Health Professions 3 8%
Agricultural and Biological Sciences 2 6%
Energy 2 6%
Engineering 2 6%
Other 5 14%
Unknown 14 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 May 2017.
All research outputs
#15,457,417
of 22,968,808 outputs
Outputs from Environmental Health
#1,146
of 1,499 outputs
Outputs of similar age
#194,883
of 310,917 outputs
Outputs of similar age from Environmental Health
#24
of 33 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,499 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 31.3. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,917 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.