↓ Skip to main content

RUNX2 repeat variation does not drive craniofacial diversity in marsupials

Overview of attention for article published in BMC Ecology and Evolution, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

blogs
1 blog
twitter
5 X users
reddit
1 Redditor

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RUNX2 repeat variation does not drive craniofacial diversity in marsupials
Published in
BMC Ecology and Evolution, May 2017
DOI 10.1186/s12862-017-0955-6
Pubmed ID
Authors

Axel H. Newton, Charles Y. Feigin, Andrew J. Pask

Abstract

Runt-related transcription factor 2 (RUNX2) is a transcription factor essential for skeletal development. Variation within the RUNX2 polyglutamine / polyalanine (QA) repeat is correlated with facial length within orders of placental mammals and is suggested to be a major driver of craniofacial diversity. However, it is not known if this correlation exists outside of the placental mammals. Here we examined the correlation between the RUNX2 QA repeat ratio and facial length in the naturally evolving sister group to the placental mammals, the marsupials. Marsupials have a diverse range of facial lengths similar to that seen in placental mammals. Despite their diversity there was almost no variation seen in the RUNX2 QA repeat across individuals spanning the entire marsupial infraclass. The extreme conservation of the marsupial RUNX2 QA repeat indicates it is under strong purifying selection. Despite this, we observed an unexpectedly high level of repeat purity. Unlike within orders of placental mammals, RUNX2 repeat variation cannot drive craniofacial diversity in marsupials. We propose conservation of the marsupial RUNX2 QA repeat is driven by the constraint of accelerated ossification of the anterior skeleton to facilitate life in the pouch. Thus, marsupials must utilize alternate pathways to placental mammals to drive craniofacial evolution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 24%
Student > Ph. D. Student 5 17%
Student > Bachelor 3 10%
Student > Master 2 7%
Student > Doctoral Student 1 3%
Other 4 14%
Unknown 7 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 45%
Biochemistry, Genetics and Molecular Biology 4 14%
Medicine and Dentistry 2 7%
Earth and Planetary Sciences 2 7%
Economics, Econometrics and Finance 1 3%
Other 0 0%
Unknown 7 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2017.
All research outputs
#3,403,500
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#911
of 3,714 outputs
Outputs of similar age
#58,973
of 324,351 outputs
Outputs of similar age from BMC Ecology and Evolution
#29
of 72 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,351 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 72 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.