↓ Skip to main content

A comprehensive dosimetric study on switching from a Type-B to a Type-C dose algorithm for modern lung SBRT

Overview of attention for article published in Radiation Oncology, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A comprehensive dosimetric study on switching from a Type-B to a Type-C dose algorithm for modern lung SBRT
Published in
Radiation Oncology, May 2017
DOI 10.1186/s13014-017-0816-x
Pubmed ID
Authors

Christina Zhou, Nathan Bennion, Rongtao Ma, Xiaoying Liang, Shuo Wang, Kristina Zvolanek, Megan Hyun, Xiaobo Li, Sumin Zhou, Weining Zhen, Chi Lin, Andrew Wahl, Dandan Zheng

Abstract

Type-C dose algorithms provide more accurate dosimetry for lung SBRT treatment planning. However, because current dosimetric protocols were developed based on conventional algorithms, its applicability for the new generation algorithms needs to be determined. Previous studies on this issue used small sample sizes and reached discordant conclusions. Our study assessed dose calculation of a Type-C algorithm with current dosimetric protocols in a large patient cohort, in order to demonstrate the dosimetric impacts and necessary treatment planning steps of switching from a Type-B to a Type-C dose algorithm for lung SBRT planning. Fifty-two lung SBRT patients were included, each planned using coplanar VMAT arcs, normalized to D95% = prescription dose using a Type-B algorithm. These were compared against three Type-C plans: re-calculated plans (identical plan parameters), re-normalized plans (D95% = prescription dose), and re-optimized plans. Dosimetric endpoints were extracted and compared among the four plans, including RTOG dosimetric criteria: (R100%, R50%, D2cm, V105%, and lung V20), PTV Dmin, Dmax, Dmean, V% and D90%, PTV coverage (V100%), homogeneity index (HI), and Paddick conformity index (PCI). Re-calculated Type-C plans resulted in decreased PTV Dmin with a mean difference of 5.2% and increased Dmax with a mean difference of 3.1%, similar or improved RTOG dose compliance, but compromised PTV coverage (mean D95% and V100% reduction of 2.5 and 8.1%, respectively). Seven plans had >5% D95% reduction (maximum reduction = 16.7%), and 18 plans had >5% V100% reduction (maximum reduction = 60.0%). Re-normalized Type-C plans restored target coverage, but yielded degraded plan conformity (average PCI reduction 4.0%), and RTOG dosimetric criteria deviation worsened in 11 plans, in R50%, D2cm, and R100%. Except for one case, re-optimized Type-C plans restored RTOG compliance achieved by the original Type-B plans, resulting in similar dosimetric values but slightly higher target dose heterogeneity (mean HI increase = 13.2%). Type-B SBRT lung plans considerably overestimate target coverage for some patients, necessitating Type-C re-normalization or re-optimization. Current RTOG dosimetric criteria appear to remain appropriate.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 6 15%
Student > Master 5 13%
Researcher 5 13%
Student > Ph. D. Student 4 10%
Other 3 8%
Other 5 13%
Unknown 11 28%
Readers by discipline Count As %
Physics and Astronomy 14 36%
Medicine and Dentistry 9 23%
Nursing and Health Professions 2 5%
Computer Science 1 3%
Engineering 1 3%
Other 0 0%
Unknown 12 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2017.
All research outputs
#20,418,183
of 22,968,808 outputs
Outputs from Radiation Oncology
#1,689
of 2,066 outputs
Outputs of similar age
#270,431
of 310,732 outputs
Outputs of similar age from Radiation Oncology
#19
of 28 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,066 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,732 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.