↓ Skip to main content

Afadin controls cell polarization and mitotic spindle orientation in developing cortical radial glia

Overview of attention for article published in Neural Development, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Afadin controls cell polarization and mitotic spindle orientation in developing cortical radial glia
Published in
Neural Development, May 2017
DOI 10.1186/s13064-017-0085-2
Pubmed ID
Authors

Jennifer Rakotomamonjy, Molly Brunner, Christoph Jüschke, Keling Zang, Eric J. Huang, Louis F. Reichardt, Anjen Chenn

Abstract

In developing tissues, cell polarity and tissue architecture play essential roles in the regulation of proliferation and differentiation. During cerebral cortical development, adherens junctions link highly polarized radial glial cells in a neurogenic niche that controls their behavior. How adherens junctions regulate radial glial cell polarity and/or differentiation in mammalian cortical development is poorly understood. Conditional deletion of Afadin, a protein required for formation and maintenance of epithelial tissues, leads to abnormalities in radial glial cell polarity and subsequent loss of adherens junctions. We observed increased numbers of obliquely-oriented progenitor cell divisions, increased exit from the ventricular zone neuroepithelium, and increased production of intermediate progenitors. Together, these findings indicate that Afadin plays an essential role in regulating apical-basal polarity and adherens junction integrity of radial glial cells, and suggest that epithelial architecture plays an important role in radial glial identity by regulating mitotic orientation and preventing premature exit from the neurogenic niche.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 23%
Student > Ph. D. Student 7 16%
Student > Bachelor 5 12%
Student > Master 4 9%
Student > Doctoral Student 2 5%
Other 4 9%
Unknown 11 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 21%
Neuroscience 9 21%
Agricultural and Biological Sciences 8 19%
Environmental Science 1 2%
Nursing and Health Professions 1 2%
Other 2 5%
Unknown 13 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2017.
All research outputs
#14,061,899
of 22,971,207 outputs
Outputs from Neural Development
#98
of 226 outputs
Outputs of similar age
#167,499
of 310,587 outputs
Outputs of similar age from Neural Development
#3
of 6 outputs
Altmetric has tracked 22,971,207 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 226 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,587 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.