The spread of Extended Spectrum β-lactamases (ESBLs) among Enterobacteriaceae and other Gram-Negative pathogens in the community and hospitals represents a major challenge to combat infections. We conducted a study to assess the prevalence and genetic makeup of ESBL-type resistance in bacterial isolates causing community- and hospital-acquired urinary tract infections.
A total of 172 isolates of Enterobacteriaceae were collected in Dar es Salaam, Tanzania, from patients who met criteria of community and hospital-acquired urinary tract infections. We used E-test ESBL strips to test for ESBL-phenotype and PCR and sequencing for detection of ESBL genes.
Overall 23.8% (41/172) of all isolates were ESBL-producers. ESBL-producers were more frequently isolated from hospital-acquired infections (32%, 27/84 than from community-acquired infections (16%, 14/88, p < 0.05). ESBL-producers showed high rate of resistance to ciprofloxacin (85.5%), doxycycline (90.2%), gentamicin (80.5%), nalidixic acid (84.5%), and trimethoprim-sulfamethoxazole (85.4%). Furthermore, 95% of ESBL-producers were multi-drug resistant compared to 69% of non-ESBL-producers (p < 0.05). The distribution of ESBL genes were as follows: 29/32 (90.6%) bla CTX-M-15, two bla SHV-12, and one had both bla CTX-M-15 and bla SHV-12. Of 29 isolates carrying bla CTX-M-15, 69% (20/29) and 31% (9/29) were hospital and community, respectively. Bla SHV-12 genotypes were only detected in hospital-acquired infections.
bla CTX-M-15 is a predominant gene conferring ESBL-production in Enterobacteriaceae causing both hospital- and community-acquired infections in Tanzania.