↓ Skip to main content

Loss of pericyte smoothened activity in mice with genetic deficiency of leptin

Overview of attention for article published in BMC Molecular and Cell Biology, April 2017
Altmetric Badge

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Loss of pericyte smoothened activity in mice with genetic deficiency of leptin
Published in
BMC Molecular and Cell Biology, April 2017
DOI 10.1186/s12860-017-0135-y
Pubmed ID
Authors

Guanhua Xie, Marzena Swiderska-Syn, Mark L. Jewell, Mariana Verdelho Machado, Gregory A. Michelotti, Richard T. Premont, Anna Mae Diehl

Abstract

Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 13%
Other 2 9%
Student > Bachelor 2 9%
Student > Ph. D. Student 2 9%
Student > Doctoral Student 1 4%
Other 5 22%
Unknown 8 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 13%
Agricultural and Biological Sciences 3 13%
Medicine and Dentistry 3 13%
Nursing and Health Professions 1 4%
Veterinary Science and Veterinary Medicine 1 4%
Other 2 9%
Unknown 10 43%