↓ Skip to main content

Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates

Overview of attention for article published in Biotechnology for Biofuels, May 2017
Altmetric Badge

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates
Published in
Biotechnology for Biofuels, May 2017
DOI 10.1186/s13068-017-0813-1
Pubmed ID
Authors

Anthi Karnaouri, Madhu Nair Muraleedharan, Maria Dimarogona, Evangelos Topakas, Ulrika Rova, Mats Sandgren, Paul Christakopoulos

Abstract

Filamentous fungi are among the most powerful cellulolytic organisms in terrestrial ecosystems. To perform the degradation of lignocellulosic substrates, these microorganisms employ both hydrolytic and oxidative mechanisms that involve the secretion and synergism of a wide variety of enzymes. Interactions between these enzymes occur on the level of saccharification, i.e., the release of neutral and oxidized products, but sometimes also reflected in the substrate liquefaction. Although the synergism regarding the yield of neutral sugars has been extensively studied, further studies should focus on the oxidized sugars, as well as the effect of enzyme combinations on the viscosity properties of the substrates. In the present study, the heterologous expression of an endoglucanase (EG) and its combined activity together with a lytic polysaccharide monooxygenase (LPMO), both from the thermophilic fungus Myceliophthora thermophila, are described. The EG gene, belonging to the glycoside hydrolase family 5, was functionally expressed in the methylotrophic yeast Pichia pastoris. The produced MtEG5A (75 kDa) featured remarkable thermal stability and showed high specific activity on microcrystalline cellulose compared to CMC, which is indicative of its processivity properties. The enzyme was capable of releasing high amounts of cellobiose from wheat straw, birch, and spruce biomass. Addition of MtLPMO9 together with MtEG5A showed enhanced enzymatic hydrolysis yields against regenerated amorphous cellulose (PASC) by improving the release not only of the neutral but also of the oxidized sugars. Assessment of activity of MtEG5A on the reduction of viscosity of PASC and pretreated wheat straw using dynamic viscosity measurements revealed that the enzyme is able to perform liquefaction of the model substrate and the natural lignocellulosic material, while when added together with MtLPMO9, no further synergistic effect was observed. The endoglucanase MtEG5A from the thermophilic fungus M. thermophila exhibited excellent properties that render it a suitable candidate for use in biotechnological applications. Its strong synergism with LPMO was reflected in sugars release, but not in substrate viscosity reduction. Based on the level of oxidative sugar formation, this is the first indication of synergy between LPMO and EG reported.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Thailand 1 1%
Unknown 85 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 19%
Student > Master 15 17%
Researcher 11 13%
Student > Postgraduate 7 8%
Student > Doctoral Student 6 7%
Other 11 13%
Unknown 20 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 27%
Agricultural and Biological Sciences 19 22%
Chemical Engineering 4 5%
Chemistry 4 5%
Environmental Science 3 3%
Other 10 12%
Unknown 23 27%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2017.
All research outputs
#8,238,981
of 10,490,471 outputs
Outputs from Biotechnology for Biofuels
#630
of 856 outputs
Outputs of similar age
#188,270
of 263,569 outputs
Outputs of similar age from Biotechnology for Biofuels
#34
of 36 outputs
Altmetric has tracked 10,490,471 research outputs across all sources so far. This one is in the 12th percentile – i.e., 12% of other outputs scored the same or lower than it.
So far Altmetric has tracked 856 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,569 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.