↓ Skip to main content

Endexpiratory lung volume measurement correlates with the ventilation/perfusion mismatch in lung injured pigs

Overview of attention for article published in Respiratory Research, May 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Endexpiratory lung volume measurement correlates with the ventilation/perfusion mismatch in lung injured pigs
Published in
Respiratory Research, May 2017
DOI 10.1186/s12931-017-0585-y
Pubmed ID
Authors

Jens Kamuf, Andreas Garcia-Bardon, Bastian Duenges, Tanghua Liu, Antje Jahn-Eimermacher, Florian Heid, Matthias David, Erik K. Hartmann

Abstract

In acute respiratory respiratory distress syndrome (ARDS) a sustained mismatch of alveolar ventilation and perfusion (VA/Q) impairs the pulmonary gas exchange. Measurement of endexpiratory lung volume (EELV) by multiple breath-nitrogen washout/washin is a non-invasive, bedside technology to assess pulmonary function in mechanically ventilated patients. The present study examines the association between EELV changes and VA/Q distribution and the possibility to predict VA/Q normalization by means of EELV in a porcine model. After approval of the state and institutional animal care committee 12 anesthetized pigs were randomized to ARDS either by bronchoalveolar lavage (n = 6) or oleic acid injection (n = 6). EELV, VA/Q ratios by multiple inert gas elimination and ventilation distribution by electrical impedance tomography were assessed at healthy state and at five different positive endexpiratory pressure (PEEP) steps in ARDS (0, 20, 15, 10, 5 cmH2O; each maintained for 30 min). VA/Q, EELV and tidal volume distribution all displayed the PEEP-induced recruitment in ARDS. We found a close correlation between VA/Q < 0.1 (representing shunt and low VA/Q units) and changes in EELV (spearman correlation coefficient -0.79). Logistic regression reveals the potential to predict VA/Q normalization (VA/Q < 0.1 less than 5%) from changes in EELV with an area under the curve of 0.89 with a 95%-CI of 0.81-0.96 in the receiver operating characteristic. Different lung injury models and recruitment characteristics did not influence these findings. In a porcine ARDS model EELV measurement depicts PEEP-induced lung recruitment and is strongly associated with normalization of the VA/Q distribution in a model-independent fashion. Determination of EELV could be an intriguing addition in the context of lung protection strategies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 23%
Student > Bachelor 5 17%
Student > Ph. D. Student 4 13%
Other 2 7%
Professor 1 3%
Other 3 10%
Unknown 8 27%
Readers by discipline Count As %
Medicine and Dentistry 16 53%
Design 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Computer Science 1 3%
Mathematics 1 3%
Other 2 7%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 June 2017.
All research outputs
#7,121,912
of 25,382,440 outputs
Outputs from Respiratory Research
#914
of 3,062 outputs
Outputs of similar age
#105,346
of 326,753 outputs
Outputs of similar age from Respiratory Research
#36
of 82 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,753 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 82 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.