↓ Skip to main content

Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species

Overview of attention for article published in BMC Genomics, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species
Published in
BMC Genomics, May 2017
DOI 10.1186/s12864-017-3769-4
Pubmed ID
Authors

Alvina G. Lai, A. Aziz Aboobaker

Abstract

Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 18%
Student > Master 12 17%
Student > Ph. D. Student 9 13%
Student > Doctoral Student 5 7%
Student > Postgraduate 5 7%
Other 12 17%
Unknown 16 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 24%
Biochemistry, Genetics and Molecular Biology 16 22%
Environmental Science 7 10%
Business, Management and Accounting 2 3%
Social Sciences 2 3%
Other 8 11%
Unknown 20 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2017.
All research outputs
#17,296,085
of 26,184,649 outputs
Outputs from BMC Genomics
#6,712
of 11,415 outputs
Outputs of similar age
#202,590
of 331,647 outputs
Outputs of similar age from BMC Genomics
#136
of 214 outputs
Altmetric has tracked 26,184,649 research outputs across all sources so far. This one is in the 31st percentile – i.e., 31% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,415 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,647 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 214 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.