↓ Skip to main content

Long-term clinical outcomes following treatment with alpha 1-proteinase inhibitor for COPD associated with alpha-1 antitrypsin deficiency: a look at the evidence

Overview of attention for article published in Respiratory Research, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
3 X users
patent
1 patent
wikipedia
1 Wikipedia page

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Long-term clinical outcomes following treatment with alpha 1-proteinase inhibitor for COPD associated with alpha-1 antitrypsin deficiency: a look at the evidence
Published in
Respiratory Research, May 2017
DOI 10.1186/s12931-017-0574-1
Pubmed ID
Authors

Franck F. Rahaghi, Marc Miravitlles

Abstract

Alpha-1 antitrypsin deficiency (AATD) is a common hereditary disorder caused by mutations in the SERPINA1 gene, which encodes alpha-1 antitrypsin (AAT; also known as alpha 1-proteinase inhibitor, A1-PI). An important function of A1-PI in the lung is to inhibit neutrophil elastase, one of various proteolytic enzymes released by activated neutrophils during inflammation. Absence or deficiency of A1-PI leads to an imbalance between elastase and anti-elastase activity, which results in progressive, irreversible destruction of lung tissue, and ultimately the development of chronic obstructive pulmonary disease with early-onset emphysema. AATD is under-diagnosed, patients can experience long delays before obtaining an accurate diagnosis, and the consequences of delayed diagnosis or misdiagnosis can be severe. Currently, A1-PI therapy is the only available treatment that addresses disease etiology in patients with AATD; however, demonstrating clinical efficacy of A1-PI therapy is challenging. In order to show therapeutic efficacy with traditional endpoints such as forced expiratory volume in one second and mortality, large sample sizes and longer duration trials are required. However, AATD is a rare, slow progressive disease, which can take decades to manifest clinically and recruiting sufficient numbers of patients into prolonged placebo-controlled trials remains a significant obstacle. Despite this, the Randomized, placebo-controlled trial of augmentation therapy in Alpha 1-Proteinase Inhibitor Deficiency (RAPID) and RAPID Extension trial, the largest clinical program completed to date, utilized quantitative chest computed tomography as a sensitive and specific measure of the extent of emphysema. Findings from the RAPID/RAPID Extension program definitively confirmed the benefits of A1-PI therapy in slowing disease progression and provided evidence of a disease-modifying effect of A1-PI therapy in patients with AATD. These findings suggest that the early introduction of treatment in patients with severe emphysema-related AATD may delay the time to death, lung transplantation or crippling respiratory complaints. In addition, there is now limited evidence that A1-PI therapy provides a gain of more than five life-years, supporting previous observations based on registry data. With the clinical efficacy of A1-PI therapy now demonstrated, further studies are required to assess long-term outcomes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 10%
Other 6 10%
Student > Ph. D. Student 5 8%
Student > Bachelor 4 7%
Researcher 4 7%
Other 7 12%
Unknown 27 46%
Readers by discipline Count As %
Medicine and Dentistry 13 22%
Biochemistry, Genetics and Molecular Biology 4 7%
Agricultural and Biological Sciences 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Psychology 2 3%
Other 6 10%
Unknown 28 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 January 2024.
All research outputs
#4,761,537
of 25,382,440 outputs
Outputs from Respiratory Research
#596
of 3,062 outputs
Outputs of similar age
#77,726
of 329,744 outputs
Outputs of similar age from Respiratory Research
#24
of 80 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,744 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.