↓ Skip to main content

The phylogenetic position of dicyemid mesozoans offers insights into spiralian evolution

Overview of attention for article published in Zoological Letters, May 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#14 of 184)
  • High Attention Score compared to outputs of the same age (93rd percentile)

Mentioned by

news
3 news outlets
twitter
29 X users
wikipedia
37 Wikipedia pages

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The phylogenetic position of dicyemid mesozoans offers insights into spiralian evolution
Published in
Zoological Letters, May 2017
DOI 10.1186/s40851-017-0068-5
Pubmed ID
Authors

Tsai-Ming Lu, Miyuki Kanda, Noriyuki Satoh, Hidetaka Furuya

Abstract

Obtaining phylogenomic data for enigmatic taxa is essential to achieve a better understanding of animal evolution. Dicyemids have long fascinated biologists because of their highly simplified body organization, but their life-cycles remain poorly known. Based on the discovery of the dicyemid DoxC gene, which encodes a spiralian peptide, it has been proposed that dicyemids are members of the Spiralia. Other studies have suggested that dicyemids may have closer affinities to mollusks and annelids. However, the phylogenetic position of dicyemids has remained a matter of debate, leading to an ambiguous picture of spiralian evolution. In the present study, newly sequenced transcriptomic data from Dicyema japonicum were complemented with published transcriptomic data or predicted gene models from 29 spiralian, ecdysozoan, and deuterostome species, generating a dataset (Dataset 1) for phylogenomic analyses, which contains 348 orthologs and 58,124 amino acids. In addition to this dataset, to eliminate systematic errors, two additional sub-datasets were created by removing compositionally heterogeneous or rapidly evolving sites and orthologs from Dataset 1, which may cause compositional heterogeneity and long-branch attraction artifacts. Maximum likelihood and Bayesian inference analyses both placed Dicyema japonicum (Dicyemida) in a clade with Intoshia linei (Orthonectida) with strong statistical support. Furthermore, maximum likelihood analyses placed the Dicyemida + Orthonectida clade within the Gastrotricha, while in Bayesian inference analyses, this clade is sister group to the clade of Gastrotricha + Platyhelminthes. Whichever the case, in all analyses, Dicyemida, Orthonectida, Gastrotricha, and Platyhelminthes constitute a monophyletic group that is a sister group to the clade of Mollusca + Annelida. Based on present phylogenomic analyses, dicyemids display close affinity to orthonectids, and they may share a common ancestor with gastrotrichs and platyhelminths, rather than with mollusks and annelids. Regarding spiralian phylogeny, the Gnathifera forms the sister group to the Rouphozoa and Lophotrochozoa, as has been suggested by previous studies; thus our analysis supports the traditional acoeloid-planuloid hypothesis of a nearly microscopic, non-coelomate common ancestor of spiralians.

X Demographics

X Demographics

The data shown below were collected from the profiles of 29 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Czechia 1 2%
Germany 1 2%
Unknown 50 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 10 19%
Student > Master 10 19%
Student > Ph. D. Student 9 17%
Researcher 6 12%
Professor > Associate Professor 4 8%
Other 6 12%
Unknown 7 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 52%
Biochemistry, Genetics and Molecular Biology 8 15%
Environmental Science 4 8%
Medicine and Dentistry 1 2%
Unknown 12 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 42. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2024.
All research outputs
#980,677
of 25,411,814 outputs
Outputs from Zoological Letters
#14
of 184 outputs
Outputs of similar age
#19,676
of 327,824 outputs
Outputs of similar age from Zoological Letters
#2
of 4 outputs
Altmetric has tracked 25,411,814 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 184 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.1. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,824 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.