↓ Skip to main content

Genome-wide association study of salt tolerance at the seed germination stage in rice

Overview of attention for article published in BMC Plant Biology, May 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
104 Dimensions

Readers on

mendeley
89 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide association study of salt tolerance at the seed germination stage in rice
Published in
BMC Plant Biology, May 2017
DOI 10.1186/s12870-017-1044-0
Pubmed ID
Authors

Yingyao Shi, Lingling Gao, Zhichao Wu, Xiaojing Zhang, Mingming Wang, Congshun Zhang, Fan Zhang, Yongli Zhou, Zhikang Li

Abstract

Improving the salt tolerance of direct-seeding rice at the seed germination stage is a major breeding goal in many Asian rice-growing countries, where seedlings must often establish in soils with a high salt content. Thus, it is important to understand the genetic mechanisms of salt tolerance in rice and to screen for germplasm with salt tolerance at the seed germination stage. Here, we investigated seven seed germination-related traits under control and salt-stress conditions and conducted a genome-wide association study based on the re-sequencing of 478 diverse rice accessions. The analysis used a mixed linear model and was based on 6,361,920 single nucleotide polymorphisms in 478 rice accessions grouped into whole, indica, and non-indica panels. Eleven loci containing 22 significant salt tolerance-associated single nucleotide polymorphisms were identified based on the stress-susceptibility indices (SSIs) of vigor index (VI) and mean germination time (MGT). From the SSI of VI, six major loci were identified, explaining 20.2% of the phenotypic variation. From the SSI of MGT, five major loci were detected, explaining 26.4% of the phenotypic variation. Of these, seven loci on chromosomes 1, 5, 6, 11, and 12 were close to six previously identified quantitative gene loci/genes related to tolerance to salinity or other abiotic stresses. The strongest association region for the SSI of MGT was identified in a ~ 13.3 kb interval (15450039-15,463,330) on chromosome 1, near salt-tolerance quantitative trait loci controlling the Na(+): K(+) ratio, total Na(+) uptake, and total K(+) concentration. The strongest association region for the SSI of VI was detected in a ~ 164.2 kb interval (526662-690,854) on chromosome 2 harboring two nitrate transporter family genes (OsNRT2.1 and OsNRT2.2), which affect gene expression under salt stress. The haplotype analysis indicated that OsNRT2.2 was associated with subpopulation differentiation and its minor/rare tolerant haplotype was detected. These results provide valuable information for salt tolerance-related gene cloning and for understanding the genetic mechanisms of salt tolerance at the seed germination stage. This information will be useful to improve the salt tolerance of direct-seeding rice varieties by genomic selection or marker-assisted selection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 89 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 89 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 15%
Student > Ph. D. Student 11 12%
Student > Master 11 12%
Student > Bachelor 6 7%
Professor > Associate Professor 5 6%
Other 12 13%
Unknown 31 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 45 51%
Biochemistry, Genetics and Molecular Biology 8 9%
Immunology and Microbiology 2 2%
Environmental Science 1 1%
Psychology 1 1%
Other 2 2%
Unknown 30 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2017.
All research outputs
#15,462,982
of 22,977,819 outputs
Outputs from BMC Plant Biology
#1,496
of 3,277 outputs
Outputs of similar age
#198,644
of 316,100 outputs
Outputs of similar age from BMC Plant Biology
#16
of 38 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,277 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,100 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.