↓ Skip to main content

Shotgun proteomic analysis of Yersinia ruckeri strains under normal and iron-limited conditions

Overview of attention for article published in Veterinary Research, October 2016
Altmetric Badge

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Shotgun proteomic analysis of Yersinia ruckeri strains under normal and iron-limited conditions
Published in
Veterinary Research, October 2016
DOI 10.1186/s13567-016-0384-3
Pubmed ID
Authors

Gokhlesh Kumar, Karin Hummel, Maike Ahrens, Simon Menanteau-Ledouble, Timothy J. Welch, Martin Eisenacher, Ebrahim Razzazi-Fazeli, Mansour El-Matbouli

Abstract

Yersinia ruckeri is the causative agent of enteric redmouth disease of fish that causes significant economic losses, particularly in salmonids. Bacterial pathogens differentially express proteins in the host during the infection process, and under certain environmental conditions. Iron is an essential nutrient for many cellular processes and is involved in host sensing and virulence regulation in many bacteria. Little is known about proteomics expression of Y. ruckeri in response to iron-limited conditions. Here, we present whole cell protein identification and quantification for two motile and two non-motile strains of Y. ruckeri cultured in vitro under iron-sufficient and iron-limited conditions, using a shotgun proteomic approach. Label-free, gel-free quantification was performed using a nanoLC-ESI and high resolution mass spectrometry. SWATH technology was used to distinguish between different strains and their responses to iron limitation. Sixty-one differentially expressed proteins were identified in four Y. ruckeri strains. These proteins were involved in processes including iron ion capture and transport, and enzymatic metabolism. The proteins were confirmed to be differentially expressed at the transcriptional level using quantitative real time PCR. Our study provides the first detailed proteome analysis of Y. ruckeri strains, which contributes to our understanding of virulence mechanisms of Y. ruckeri, and informs development of novel control methods for enteric redmouth disease.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 20%
Other 5 14%
Student > Master 5 14%
Researcher 4 11%
Student > Bachelor 3 9%
Other 5 14%
Unknown 6 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 29%
Agricultural and Biological Sciences 10 29%
Immunology and Microbiology 3 9%
Unspecified 2 6%
Environmental Science 1 3%
Other 4 11%
Unknown 5 14%