↓ Skip to main content

Recommendations for cerebrospinal fluid collection for the analysis by ELISA of neurogranin trunc P75, α-synuclein, and total tau in combination with Aβ(1–42)/Aβ(1–40)

Overview of attention for article published in Alzheimer's Research & Therapy, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
83 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recommendations for cerebrospinal fluid collection for the analysis by ELISA of neurogranin trunc P75, α-synuclein, and total tau in combination with Aβ(1–42)/Aβ(1–40)
Published in
Alzheimer's Research & Therapy, June 2017
DOI 10.1186/s13195-017-0265-7
Pubmed ID
Authors

Hugo Vanderstichele, Leentje Demeyer, Shorena Janelidze, Els Coart, Erik Stoops, Kimberley Mauroo, Victor Herbst, Cindy François, Oskar Hansson

Abstract

The pathophysiology of neurodegeneration is complex. Its diagnosis requires an early identification of sequential changes in several hallmarks in the brains of affected subjects. The presence of brain pathology can be visualized in the cerebrospinal fluid (CSF) by protein profiling. It is clear that the field of Alzheimer's disease (AD) will benefit from an integration of algorithms including CSF concentrations of individual proteins, especially as an aid in clinical decision-making or to improve patient enrolment in clinical trials. The protein profiling approach requires standard operating procedures for collection and storage of CSF which must be easy to integrate into a routine clinical lab environment. Our study provides recommendations for analysis of neurogranin trunc P75, α-synuclein, and tau, in combination with the ratio of β-amyloid Aβ(1-42)/Aβ(1-40). Protocols for CSF collection were compared with CSF derived from subjects with normal pressure hydrocephalus (n = 19). Variables included recipient type (collection, storage), tube volume, and addition of detergents at the time of collection. CSF biomarker analysis was performed with enzyme-linked immunosorbent assays (ELISAs). Data were analyzed with linear repeated measures and mixed effects models. Adsorption to recipients is lower for neurogranin trunc P75, α-synuclein, and tau (<10%), as compared to Aβ(1-42). For neurogranin trunc P75 and total tau, there is still an effect on analyte concentrations as a function of the tube volume. Protocol-related differences for Aβ(1-42) can be normalized at the (pre-)analytical level using the ratio Aβ(1-42)/Aβ(1-40), but not by using the ratio Aβ(1-42)/tau. The addition of detergent at the time of collection eliminates differences due to adsorption. Our study recommends the use of low protein binding tubes for quantification in CSF (without additives) of all relevant CSF biomarkers. Pre-analytical factors have less effect on α-synuclein, neurogranin trunc P75, and total tau, as compared to Aβ(1-42). The ratio of Aβ(1-42)/Aβ(1-40), but not Aβ(1-42)/tau, can be used to adjust for pre-analytical differences in analyte concentrations. Our study does not recommend the inclusion of detergents at the time of collection of CSF. The present results provide an experimental basis for new recommendations for parallel analysis of several proteins using one protocol for collection and storage of CSF.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 83 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 16%
Researcher 12 14%
Other 9 11%
Student > Master 9 11%
Unspecified 5 6%
Other 20 24%
Unknown 15 18%
Readers by discipline Count As %
Medicine and Dentistry 19 23%
Neuroscience 16 19%
Biochemistry, Genetics and Molecular Biology 9 11%
Unspecified 5 6%
Agricultural and Biological Sciences 5 6%
Other 9 11%
Unknown 20 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2017.
All research outputs
#4,214,819
of 22,979,862 outputs
Outputs from Alzheimer's Research & Therapy
#916
of 1,239 outputs
Outputs of similar age
#75,233
of 317,259 outputs
Outputs of similar age from Alzheimer's Research & Therapy
#19
of 22 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,239 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 26.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,259 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.