↓ Skip to main content

Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors

Overview of attention for article published in Molecular Cancer, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors
Published in
Molecular Cancer, December 2016
DOI 10.1186/s12943-016-0562-y
Pubmed ID
Authors

Seraina Faes, Adrian P. Duval, Anne Planche, Emilie Uldry, Tania Santoro, Catherine Pythoud, Jean-Christophe Stehle, Janine Horlbeck, Igor Letovanec, Nicolo Riggi, Nicolas Demartines, Olivier Dormond

Abstract

Blocking the mechanistic target of rapamycin complex-1 (mTORC1) with chemical inhibitors such as rapamycin has shown limited clinical efficacy in cancer. The tumor microenvironment is characterized by an acidic pH which interferes with cancer therapies. The consequences of acidity on the anti-cancer efficacy of mTORC1 inhibitors have not been characterized and are thus the focus of our study. Cancer cell lines were treated with rapamycin in acidic or physiological conditions and cell proliferation was investigated. The effect of acidity on mTORC1 activity was determined by Western blot. The anticancer efficacy of rapamycin in combination with sodium bicarbonate to increase the intratumoral pH was tested in two different mouse models and compared to rapamycin treatment alone. Histological analysis was performed on tumor samples to evaluate proliferation, apoptosis and necrosis. Exposing cancer cells to acidic pH in vitro significantly reduced the anti-proliferative effect of rapamycin. At the molecular level, acidity significantly decreased mTORC1 activity, suggesting that cancer cell proliferation is independent of mTORC1 in acidic conditions. In contrast, the activation of mitogen-activated protein kinase (MAPK) or AKT were not affected by acidity, and blocking MAPK or AKT with a chemical inhibitor maintained an anti-proliferative effect at low pH. In tumor mouse models, the use of sodium bicarbonate increased mTORC1 activity in cancer cells and potentiated the anti-cancer efficacy of rapamycin. Combining sodium bicarbonate with rapamycin resulted in increased tumor necrosis, increased cancer cell apoptosis and decreased cancer cell proliferation as compared to single treatment. Taken together, these results emphasize the inefficacy of mTORC1 inhibitors in acidic conditions. They further highlight the potential of combining sodium bicarbonate with mTORC1 inhibitors to improve their anti-tumoral efficacy.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 14%
Student > Bachelor 6 14%
Student > Ph. D. Student 4 10%
Student > Doctoral Student 3 7%
Professor 2 5%
Other 6 14%
Unknown 15 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 19%
Medicine and Dentistry 5 12%
Agricultural and Biological Sciences 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Immunology and Microbiology 2 5%
Other 4 10%
Unknown 16 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2023.
All research outputs
#19,020,937
of 23,577,547 outputs
Outputs from Molecular Cancer
#1,348
of 1,780 outputs
Outputs of similar age
#308,370
of 419,112 outputs
Outputs of similar age from Molecular Cancer
#13
of 15 outputs
Altmetric has tracked 23,577,547 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,780 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,112 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.