↓ Skip to main content

Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms

Overview of attention for article published in Journal of Nanobiotechnology, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms
Published in
Journal of Nanobiotechnology, March 2017
DOI 10.1186/s12951-017-0253-x
Pubmed ID
Authors

Christian Santschi, Nadia Von Moos, Volodymyr B. Koman, Vera I. Slaveykova, Paul Bowen, Olivier J. F. Martin

Abstract

Engineered nanomaterials (ENMs) are key drivers for the development of highly sophisticated new technologies. As all new attainments, the rapidly increasing used of ENMs raise concerns about their safety for the environment and humans. There is growing evidence showing that if engineered nanomaterials are released into the environment, there is a possibility that they could cause harm to aquatic microorganisms. Among the divers effects triggering their toxicity the ability of ENMs to generate reactive oxygen species (ROS) capable of oxidizing biomolecules is currently considered a central mechanism of toxicity. Therefore, development of sensitive tools for quantification of the ROS generation and oxidative stress are highly sought. After briefly introducing ENMs-induced ROS generation and oxidative stress in the aquatic microorganisms (AMOs), this overview paper focuses on a new optical biosensor allowing sensitive and dynamic measurements of H2O2 in real-time using multiscattering enhanced absorption spectroscopy. Its principle is based on sensitive absorption measurements of the heme protein cytochrome c whose absorption spectrum alters with the oxidation state of constituent ferrous Fe(II) and ferric Fe(III). For biological applications cytochrome c was embedded in porous random media resulting in an extended optical path length through multiple scattering of light, which lowers the limit of detection to a few nM of H2O2. The sensor was also integrated in a microfluidic system containing micro-valves and sieves enabling more complex experimental conditions. To demonstrate its performance, abiotic absorption measurements of low concentrations of dye molecules and 10 nm gold particles were carried out achieving limits of detection in the low nM range. Other biologically relevant reactive oxygen species can be measured at sub-μM concentrations, which was shown for glucose and lactate through enzymatic reactions producing H2O2. In ecotoxicological investigations H2O2 excreted by aquatic microorganisms exposed to various stressors were measured. Pro-oxidant effects of nano-TiO2 and nano-CuO towards green alga Chlamydomonas reinhardtii were explored in various exposure media and under different light illuminations. Dynamics of Cd(2+) induced effects on photosynthetic activity, sensitisation and recovery of cells of C. reinhardtii was also studied.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 19%
Researcher 7 11%
Student > Ph. D. Student 7 11%
Student > Bachelor 4 6%
Other 3 5%
Other 8 13%
Unknown 22 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 13%
Engineering 7 11%
Environmental Science 6 10%
Biochemistry, Genetics and Molecular Biology 5 8%
Chemistry 3 5%
Other 9 14%
Unknown 25 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2021.
All research outputs
#17,457,927
of 25,610,986 outputs
Outputs from Journal of Nanobiotechnology
#828
of 1,964 outputs
Outputs of similar age
#207,762
of 321,692 outputs
Outputs of similar age from Journal of Nanobiotechnology
#6
of 12 outputs
Altmetric has tracked 25,610,986 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,964 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,692 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.