↓ Skip to main content

In vitro downregulated hypoxia transcriptome is associated with poor prognosis in breast cancer

Overview of attention for article published in Molecular Cancer, June 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (62nd percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In vitro downregulated hypoxia transcriptome is associated with poor prognosis in breast cancer
Published in
Molecular Cancer, June 2017
DOI 10.1186/s12943-017-0673-0
Pubmed ID
Authors

Basel Abu-Jamous, Francesca M. Buffa, Adrian L. Harris, Asoke K. Nandi

Abstract

Hypoxia is a characteristic of breast tumours indicating poor prognosis. Based on the assumption that those genes which are up-regulated under hypoxia in cell-lines are expected to be predictors of poor prognosis in clinical data, many signatures of poor prognosis were identified. However, it was observed that cell line data do not always concur with clinical data, and therefore conclusions from cell line analysis should be considered with caution. As many transcriptomic cell-line datasets from hypoxia related contexts are available, integrative approaches which investigate these datasets collectively, while not ignoring clinical data, are required. We analyse sixteen heterogeneous breast cancer cell-line transcriptomic datasets in hypoxia-related conditions collectively by employing the unique capabilities of the method, UNCLES, which integrates clustering results from multiple datasets and can address questions that cannot be answered by existing methods. This has been demonstrated by comparison with the state-of-the-art iCluster method. From this collection of genome-wide datasets include 15,588 genes, UNCLES identified a relatively high number of genes (>1000 overall) which are consistently co-regulated over all of the datasets, and some of which are still poorly understood and represent new potential HIF targets, such as RSBN1 and KIAA0195. Two main, anti-correlated, clusters were identified; the first is enriched with MYC targets participating in growth and proliferation, while the other is enriched with HIF targets directly participating in the hypoxia response. Surprisingly, in six clinical datasets, some sub-clusters of growth genes are found consistently positively correlated with hypoxia response genes, unlike the observation in cell lines. Moreover, the ability to predict bad prognosis by a combined signature of one sub-cluster of growth genes and one sub-cluster of hypoxia-induced genes appears to be comparable and perhaps greater than that of known hypoxia signatures. We present a clustering approach suitable to integrate data from diverse experimental set-ups. Its application to breast cancer cell line datasets reveals new hypoxia-regulated signatures of genes which behave differently when in vitro (cell-line) data is compared with in vivo (clinical) data, and are of a prognostic value comparable or exceeding the state-of-the-art hypoxia signatures.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 20%
Researcher 5 17%
Student > Master 4 13%
Student > Doctoral Student 2 7%
Student > Bachelor 1 3%
Other 1 3%
Unknown 11 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 20%
Agricultural and Biological Sciences 5 17%
Medicine and Dentistry 4 13%
Psychology 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 0 0%
Unknown 13 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 November 2017.
All research outputs
#7,284,400
of 22,981,247 outputs
Outputs from Molecular Cancer
#525
of 1,730 outputs
Outputs of similar age
#116,352
of 317,090 outputs
Outputs of similar age from Molecular Cancer
#6
of 39 outputs
Altmetric has tracked 22,981,247 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,730 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,090 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.