↓ Skip to main content

Effect of three lactobacilli with strain-specific activities on the growth performance, faecal microbiota and ileum mucosa proteomics of piglets

Overview of attention for article published in Journal of Animal Science and Biotechnology, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of three lactobacilli with strain-specific activities on the growth performance, faecal microbiota and ileum mucosa proteomics of piglets
Published in
Journal of Animal Science and Biotechnology, June 2017
DOI 10.1186/s40104-017-0183-3
Pubmed ID
Authors

Yating Su, Xingjie Chen, Ming Liu, Xiaohua Guo

Abstract

The beneficial effects of Lactobacillus probiotics in animal production are often strain-related. Different strains from the same species may exert different weight-gain effect on hosts in vivo. Most lactobacilli are selected based on their in vitro activities, and their metabolism and regulation on the intestine based on strain-related characters are largely unexplored. The objective of the present study was to study the in vivo effects of the three lactobacilli on growth performance and to compare the differential effects of the strains on the faecal microbiota and ileum mucosa proteomics of piglets. Three hundred and sixty piglets were assigned to one of four treatments, which included an antibiotics-treated control and three experimental groups supplemented with the three lactobacilli, L. salivarius G1-1, L. reuteri G8-5 and L. reuteri G22-2, respectively. Piglets were weighed and the feed intake was recorded to compare the growth performance. The faecal lactobacilli and coliform was quantified using quantitative PCR and the faecal microbiota was profiled by denaturing gradient gel electrophoresis (DGGE). The proteomic approach was applied to compare the differential expression of proteins in the ileum mucosa. No statistical difference was found among the three Lactobacillus-treated groups in animal growth performance compared with the antibiotics-treated group (P > 0.05). Supplementation of lactobacilli in diets significantly increased the relative 16S rRNA gene copies of Lactobacillus genus on both d 14 and d 28 (P < 0.05)., and the bacterial community profiles based on DGGE from the lactobacilli-treated groups were distinctly different from the antibiotics-treated group (P < 0.05). The ileum mucosa of piglets responded to all Lactobacillus supplementation by producing more newly expressed proteins and the identified proteins were all associated with the functions beneficial for stabilization of cell structure. Besides, some other up-regulated and down-regulated proteins in different Lactobacillus-treated groups showed the expression of proteins were partly strain-related. All the three lactobacilli in this study show comparable effects to antibiotics on piglets growth performance. The three lactobacilli were found able to modify intestinal microbiota and mucosa proteomics. The regulation of protein expression in the intestinal mucosa are partly associated with the strains administrated in feed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 18%
Researcher 8 18%
Student > Ph. D. Student 8 18%
Student > Doctoral Student 4 9%
Other 2 5%
Other 4 9%
Unknown 10 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 32%
Immunology and Microbiology 6 14%
Biochemistry, Genetics and Molecular Biology 4 9%
Veterinary Science and Veterinary Medicine 3 7%
Medicine and Dentistry 2 5%
Other 4 9%
Unknown 11 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2017.
All research outputs
#4,620,582
of 25,382,440 outputs
Outputs from Journal of Animal Science and Biotechnology
#72
of 904 outputs
Outputs of similar age
#75,593
of 331,431 outputs
Outputs of similar age from Journal of Animal Science and Biotechnology
#5
of 23 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 904 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,431 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.