↓ Skip to main content

Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures

Overview of attention for article published in Skeletal Muscle, June 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
8 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures
Published in
Skeletal Muscle, June 2017
DOI 10.1186/s13395-017-0130-1
Pubmed ID
Authors

Premi Haynes, Kelly Kernan, Suk-Lin Zhou, Daniel G. Miller

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is most commonly inherited in an autosomal dominant pattern and caused by the abnormal expression of DUX4 in skeletal muscle. The DUX4 transcription factor has DNA binding domains similar to several paired class homeotic transcription factors, but only myogenic factors PAX3 and PAX7 rescue cell viability when co-expressed with DUX4 in mouse myoblasts. This observation suggests competition for DNA binding sites in satellite cells might limit muscle repair and may be one aspect of DUX4-associated myotoxicity. The competition hypothesis requires that DUX4 and PAX3/7 be expressed in the same cells at some point during development or in adult tissues. We modeled myogenesis using human isogenic iPS and ES cells and examined expression patterns of DUX4, PAX3, and PAX7 to determine if conditions that promote PAX3 and PAX7 expression in cell culture also promote DUX4 expression in the same cells. Isogenic iPSCs were generated from human fibroblasts of two FSHD-affected individuals with somatic mosaicism. Clones containing the shortened FSHD-causing D4Z4 array or the long non-pathogenic array were isolated from the same individuals. We also examined myogenesis in commercially available hES cell lines derived from FSHD-affected and non-affected embryos. DUX4, PAX3, and PAX7 messenger RNAs (mRNAs) were quantified during a 40-day differentiation protocol, and antibodies were used to identify cell types in different stages of differentiation to determine if DUX4 and PAX3 or PAX7 are present in the same cells. Human iPS and ES cells differentiated into skeletal myocytes as evidenced by Titin positive multinucleated fibers appearing toward the end of a 40-day differentiation protocol. PAX3 and PAX7 were expressed at similar times during differentiation, and DUX4 positive nuclei were seen at terminal stages of differentiation in cells containing the short D4Z4 arrays. Nuclei that expressed both DUX4 and PAX3, or DUX4 and PAX7 were not observed after examining immunostained nuclei at five different time points during myogenic differentiation of pluripotent cells. We conclude that DUX4, PAX3, and PAX7 have distinct expression patterns during myogenic differentiation of stem cells. Our findings are consistent with the hypothesis that muscle damage in FSHD is due to DUX4-mediated toxicity causing destruction of terminally differentiated myofibers. While these studies examine DUX4, PAX3, and PAX7 expression patterns during stem cell myogenesis, they should not be generalized to tissue repair in adult muscle tissue.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 26%
Student > Doctoral Student 6 10%
Student > Master 6 10%
Student > Ph. D. Student 6 10%
Student > Bachelor 3 5%
Other 4 7%
Unknown 18 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 36%
Agricultural and Biological Sciences 8 14%
Medicine and Dentistry 7 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Neuroscience 2 3%
Other 0 0%
Unknown 18 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 June 2018.
All research outputs
#6,961,169
of 22,981,247 outputs
Outputs from Skeletal Muscle
#210
of 364 outputs
Outputs of similar age
#110,830
of 316,843 outputs
Outputs of similar age from Skeletal Muscle
#6
of 9 outputs
Altmetric has tracked 22,981,247 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 364 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,843 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.